In this paper we carry on the study of asymptotic behavior of some solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, started in the first paper [J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press]. Here we are mainly interested in the analysis of the location and shape of least energy solutions when the singular perturbation parameter tends to zero. We show that in many cases they coincide with the new solutions produced in [J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press].
Mots clés : Singularly perturbed elliptic problems, Finite-dimensional reductions, Local inversion
@article{AIHPC_2010__27_1_37_0, author = {Garcia Azorero, Jesus and Malchiodi, Andrea and Montoro, Luigi and Peral, Ireneo}, title = {Concentration of solutions for some singularly perturbed mixed problems: {Asymptotics} of minimal energy solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {37--56}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.06.005}, zbl = {1194.35037}, mrnumber = {2580503}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.005/} }
TY - JOUR AU - Garcia Azorero, Jesus AU - Malchiodi, Andrea AU - Montoro, Luigi AU - Peral, Ireneo TI - Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 37 EP - 56 VL - 27 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.005/ DO - 10.1016/j.anihpc.2009.06.005 LA - en ID - AIHPC_2010__27_1_37_0 ER -
%0 Journal Article %A Garcia Azorero, Jesus %A Malchiodi, Andrea %A Montoro, Luigi %A Peral, Ireneo %T Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 37-56 %V 27 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.005/ %R 10.1016/j.anihpc.2009.06.005 %G en %F AIHPC_2010__27_1_37_0
Garcia Azorero, Jesus; Malchiodi, Andrea; Montoro, Luigi; Peral, Ireneo. Concentration of solutions for some singularly perturbed mixed problems: Asymptotics of minimal energy solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 37-56. doi : 10.1016/j.anihpc.2009.06.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.06.005/
[1] Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math. vol. 240, Birkhäuser (2005)
, ,[2] Nonlinear Analysis and Semilinear Elliptic Problems, Stud. Adv. Math. vol. 104, Cambridge Univ. Press, Cambridge (2007) | Zbl
, ,[3] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381 | Zbl
, ,[4] Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 no. 1–2 (1997), 69-94 | EuDML | Numdam | Zbl
, , ,[5] Eigenvalues and bifurcation for elliptic equations with mixed Dirichlet–Neumann boundary conditions related to Caffarelli–Kohn–Nirenberg inequalities, Topol. Methods Nonlinear Anal. 23 no. 2 (2004), 239-273 | Zbl
, ,[6] Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana 20 no. 1 (2004), 67-86 | EuDML | Zbl
, ,[7] Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 no. 4 (1999), 1177-1212 | Zbl
, ,[8] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 no. 3 (1999), 883-898 | Zbl
, ,[9] J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press
[10] Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. (Suppl. Stud. A) 7 (1981), 369-402
, , ,[11] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo (1983) | Zbl
, ,[12] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 (1989), 243-266 | Zbl
,[13] Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988), 1-27 | Zbl
, , ,[14] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768 | Zbl
, ,[15] On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991), 819-851 | Zbl
, ,[16] Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281 | Zbl
, ,[17] Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hölderiane, Ann. Mat. Pura Appl. (4) 51 (1960), 1-37 | Zbl
,Cité par Sources :