We consider the nonlinear Klein–Gordon equations coupled with the Born–Infeld theory under the electrostatic solitary wave ansatz. The existence of the least-action solitary waves is proved in both bounded smooth domain case and
@article{AIHPC_2010__27_1_351_0, author = {Yu, Yong}, title = {Solitary waves for nonlinear {Klein{\textendash}Gordon} equations coupled with {Born{\textendash}Infeld} theory}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {351--376}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.001}, mrnumber = {2580514}, zbl = {1184.35286}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/} }
TY - JOUR AU - Yu, Yong TI - Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 351 EP - 376 VL - 27 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/ DO - 10.1016/j.anihpc.2009.11.001 LA - en ID - AIHPC_2010__27_1_351_0 ER -
%0 Journal Article %A Yu, Yong %T Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 351-376 %V 27 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/ %R 10.1016/j.anihpc.2009.11.001 %G en %F AIHPC_2010__27_1_351_0
Yu, Yong. Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 351-376. doi : 10.1016/j.anihpc.2009.11.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/
[1] Dispersionless limit of integrable models, Brazilian J. Physics 30 no. 2 (June 2000), 455-468
,[2] Modified field equations with a finite radius of the electron, Nature 132 (1933), 282 | Zbl
,[3] On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A 143 (1934), 410-437 | Zbl
,[4] Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 no. 4 (2002), 409-420 | MR | Zbl
, ,[5] Solitary waves in the nonlinear wave equation and in gauge theories, Fixed Point Theory Appl. 1 (2007), 61-86 | MR | Zbl
, ,[6] Solitary waves in classical field theory, , (ed.), Nonlinear Analysis and Applications to Physical Sciences, Springer, Milano (2004), 1-50 | MR | Zbl
, ,[7] On the existence of infinitely many geodesics on space–time manifolds, Adv. in Math. 105 (1994), 1-25 | MR | Zbl
, ,[8] Foundation of the new field theory, Nature 132 (1933), 1004 | Zbl
, ,[9] Foundation of the new field theory, Proc. Roy. Soc. A 144 (1934), 425-451 | Zbl
, ,[10] Critical points theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273 | EuDML | MR | Zbl
, ,[11] Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell's equations, Nonlinear Anal. 58 (2004), 733-747 | MR | Zbl
,[12] Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 no. 5 (2004), 893-906 | MR | Zbl
, ,[13] Nonlinear Klein–Gordon equations coupled with Born–Infeld type equations, Elect. J. Diff. Eqns. 26 (2002), 1-13 | EuDML | MR | Zbl
, ,[14] Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations 98 (1992), 34-56 | MR | Zbl
,[15] Existence and non-existence results for semilinear elliptic problems in unbounded domanis, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14 | MR | Zbl
, ,[16] Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys. 171 (1995), 323-350 | MR | Zbl
, ,[17] Born–Infeld type equations for electrostatic fields, J. of Math. Phys. 43 no. 11 (2002), 5698-5706 | MR | Zbl
, , ,[18] Born–Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514 (1998), 603 | MR | Zbl
,
[19] Symmetry of positive solutions of nonlinear elliptic equations in
[20] Elliptic Partial Differential Equations of Second Order, Springer (2001) | MR | Zbl
, ,
[21] Uniqueness of positive solutions of
[22] Existence and stability of solitary waves in non-linear Klein–Gordon–Maxwell equations, Rev. Math. Phys. 18 (2006), 747-779 | MR | Zbl
,[23] Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27 | MR | Zbl
, , ,[24] Gauged harmonic maps, Born–Infeld electromagnetism, and magnetic vortices, CPAM 56 (2003), 1631-1665 | MR | Zbl
, ,[25] Coupled Klein–Gordon and Born–Infeld type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 1519-1528 | MR | Zbl
,[26] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, CPAM XLVIII (1995), 731-768 | MR | Zbl
, ,[27] Chaplygin Gas and Brane, Proceedings of the 8th International Conference on Geometry Integrability & Quantization (June 2007), 279-291 | MR
,[28] The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30 | MR | Zbl
,[29] TASI lectures on D-branes, arXiv:hep-th/9611050 , Brane physics in M-theory, hep-th/9807171 , Born–Infeld action in string theory, hep-th/9906075
,[30] Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Ser. Math. vol. 65 (1986) | MR
,[31] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edition
[32] String theory and noncommutative geometry, JHEP 9909 (1999), 032 | MR
, ,[33] On the shape of least-energy solutions to a semilinear Neumann problem, CPAM 44 (1991), 819-851 | MR | Zbl
, ,[34] Classical solutions in the Born–Infeld theory, Proceedings: Mathematical, Physical and Engineering Sciences 456 no. 1995 (2000), 615-640 | MR | Zbl
,[35] Multiple entire solutions of a semilinear elliptic equation, Nonlinear Anal. 12 (1988), 1297-1316 | MR | Zbl
,[36] Spike-layered solutions of singularly perturbed quasilinear Dirichlet problems, J. Math. Anal. Appl. 283 (2003), 667-680 | MR | Zbl
, ,- Some existence results of solitary waves for coupled Klein–Gordon and Born–Infeld equations, Complex Variables and Elliptic Equations (2025), p. 1 | DOI:10.1080/17476933.2024.2441314
- The Schrödinger–Born–Infeld system: Attractive case, Applied Mathematics Letters, Volume 158 (2024), p. 109259 | DOI:10.1016/j.aml.2024.109259
- Existence of nontrivial solutions for fractional Klein–Gordon equation coupled with Born–Infeld theory with critical exponents, Complex Variables and Elliptic Equations (2024), p. 1 | DOI:10.1080/17476933.2024.2394870
- Existence of high energy solutions for superlinear coupled Klein-Gordons and Born-Infeld equations, Electronic Journal of Differential Equations, Volume 2024 (2024) no. 01-??, p. 18 | DOI:10.58997/ejde.2024.18
- On solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory with Berestycki–Lions conditions on
, Electronic Research Archive, Volume 32 (2024) no. 4, p. 2363 | DOI:10.3934/era.2024108 - MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY, Journal of Applied Analysis Computation, Volume 14 (2024) no. 1, p. 84 | DOI:10.11948/20230034
- Nontrivial solution for Klein-Gordon equation coupled with Born-Infeld theory with critical growth, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0282
- Multiple Solutions for a Nonhomogeneous Schrödinger–Born–Infeld System, Bulletin of the Malaysian Mathematical Sciences Society, Volume 46 (2023) no. 4 | DOI:10.1007/s40840-023-01544-9
- The quasilinear Schrödinger–Poisson system, Journal of Mathematical Physics, Volume 64 (2023) no. 7 | DOI:10.1063/5.0150174
- Existence and Multiplicity of Sign-Changing Solutions for Klein–Gordon Equation Coupled with Born–Infeld Theory with Subcritical Exponent, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 1 | DOI:10.1007/s12346-022-00709-4
- Existence and asymptotic behavior of solutions for the Schrödinger–Born–Infeld system with steep potential well, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 6 | DOI:10.1007/s00033-023-02138-y
- Ground state solution for the nonlinear Klein–Gordon equation coupled with Born–Infeld theory with critical exponents, Analysis and Mathematical Physics, Volume 12 (2022) no. 2 | DOI:10.1007/s13324-022-00661-1
- Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born-Infeld type equations, Electronic Journal of Differential Equations, Volume 2022 (2022) no. 01-87, p. 74 | DOI:10.58997/ejde.2022.74
- On the Solitary Solutions for the Nonlinear Klein–Gordon Equation Coupled with Born–Infeld Theory, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 57 (2022) no. 3, p. 145 | DOI:10.3103/s1068362322030049
- On the solitary solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory, Proceedings of NAS RA. Mathematics (2022), p. 18 | DOI:10.54503/0002-3043-2022.57.3-18-31
- Solitary waves for a fractional Klein–Gordon–Maxwell equations, Electronic Journal of Qualitative Theory of Differential Equations (2021) no. 94, p. 1 | DOI:10.14232/ejqtde.2021.1.94
- A perturbation approach for the Schrödinger-Born-Infeld system: Solutions in the subcritical and critical case, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 2, p. 125326 | DOI:10.1016/j.jmaa.2021.125326
- Solitary wave of ground state type for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in ℝ2, Electronic Journal of Qualitative Theory of Differential Equations (2020) no. 12, p. 1 | DOI:10.14232/ejqtde.2020.1.12
- On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 697 | DOI:10.1007/s00205-018-1331-4
- On the Schrödinger–Born–Infeld System, Bulletin of the Brazilian Mathematical Society, New Series, Volume 50 (2019) no. 1, p. 275 | DOI:10.1007/s00574-018-0111-y
- Vortex ground states for Klein-Gordon-Maxwell-Proca type systems, Journal of Mathematical Physics, Volume 58 (2017) no. 4 | DOI:10.1063/1.4982038
- On the Electrostatic Born–Infeld Equation with Extended Charges, Communications in Mathematical Physics, Volume 346 (2016) no. 3, p. 877 | DOI:10.1007/s00220-016-2586-y
- Cauchy problem for the nonlinear Klein–Gordon equation coupled with the Maxwell equation, Journal of Mathematical Analysis and Applications, Volume 443 (2016) no. 2, p. 778 | DOI:10.1016/j.jmaa.2016.05.057
- Existence of solitary wave solutions for the nonlinear Klein–Gordon equation coupled with Born–Infeld theory with critical Sobolev exponent, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 12, p. 4241 | DOI:10.1016/j.na.2011.04.002
Cité par 24 documents. Sources : Crossref