Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 351-376.

We consider the nonlinear Klein–Gordon equations coupled with the Born–Infeld theory under the electrostatic solitary wave ansatz. The existence of the least-action solitary waves is proved in both bounded smooth domain case and 3 case. In particular, for bounded smooth domain case, we study the asymptotic behaviors and profiles of the positive least-action solitary waves with respect to the frequency parameter ω. We show that when κ and ω are suitably large, the least-action solitary waves admit only one local maximum point. When ω, the point-condensation phenomenon occurs if we consider the normalized least-action solitary waves.

@article{AIHPC_2010__27_1_351_0,
     author = {Yu, Yong},
     title = {Solitary waves for nonlinear {Klein{\textendash}Gordon} equations coupled with {Born{\textendash}Infeld} theory},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {351--376},
     publisher = {Elsevier},
     volume = {27},
     number = {1},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.11.001},
     mrnumber = {2580514},
     zbl = {1184.35286},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/}
}
TY  - JOUR
AU  - Yu, Yong
TI  - Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 351
EP  - 376
VL  - 27
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/
DO  - 10.1016/j.anihpc.2009.11.001
LA  - en
ID  - AIHPC_2010__27_1_351_0
ER  - 
%0 Journal Article
%A Yu, Yong
%T Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 351-376
%V 27
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/
%R 10.1016/j.anihpc.2009.11.001
%G en
%F AIHPC_2010__27_1_351_0
Yu, Yong. Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 351-376. doi : 10.1016/j.anihpc.2009.11.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/

[1] J.C. Brunelli, Dispersionless limit of integrable models, Brazilian J. Physics 30 no. 2 (June 2000), 455-468

[2] Max Born, Modified field equations with a finite radius of the electron, Nature 132 (1933), 282 | Zbl

[3] Max Born, On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A 143 (1934), 410-437 | Zbl

[4] V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 no. 4 (2002), 409-420 | MR | Zbl

[5] V. Benci, D. Fortunato, Solitary waves in the nonlinear wave equation and in gauge theories, Fixed Point Theory Appl. 1 (2007), 61-86 | MR | Zbl

[6] V. Benci, D. Fortunato, Solitary waves in classical field theory, V. Benci, A. Masiello (ed.), Nonlinear Analysis and Applications to Physical Sciences, Springer, Milano (2004), 1-50 | MR | Zbl

[7] V. Benci, D. Fortunato, On the existence of infinitely many geodesics on space–time manifolds, Adv. in Math. 105 (1994), 1-25 | MR | Zbl

[8] M. Born, L. Infeld, Foundation of the new field theory, Nature 132 (1933), 1004 | Zbl

[9] M. Born, L. Infeld, Foundation of the new field theory, Proc. Roy. Soc. A 144 (1934), 425-451 | Zbl

[10] V. Benci, P.H. Rabinowitz, Critical points theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273 | EuDML | MR | Zbl

[11] D. Cassani, Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell's equations, Nonlinear Anal. 58 (2004), 733-747 | MR | Zbl

[12] Teresa D'Aprile, Dimitri Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 no. 5 (2004), 893-906 | MR | Zbl

[13] Pietro D'Avenia, Lorenzo Pisani, Nonlinear Klein–Gordon equations coupled with Born–Infeld type equations, Elect. J. Diff. Eqns. 26 (2002), 1-13 | EuDML | MR | Zbl

[14] H. Egnell, Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations 98 (1992), 34-56 | MR | Zbl

[15] M. Esteban, P.L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domanis, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14 | MR | Zbl

[16] M. Esteban, E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys. 171 (1995), 323-350 | MR | Zbl

[17] D. Fortunato, L. Orsina, L. Pisani, Born–Infeld type equations for electrostatic fields, J. of Math. Phys. 43 no. 11 (2002), 5698-5706 | MR | Zbl

[18] G.W. Gibbons, Born–Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514 (1998), 603 | MR | Zbl

[19] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. in Math. 7A no. Suppl. Stud. (1981), 369-402 | MR

[20] D. Gilbarg, Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (2001) | MR | Zbl

[21] M.K. Kwong, Uniqueness of positive solutions of Δu-u+up=0 in Rn, Arch. Rational Mech. Anal. 105 (1989), 243-266 | MR | Zbl

[22] E. Long, Existence and stability of solitary waves in non-linear Klein–Gordon–Maxwell equations, Rev. Math. Phys. 18 (2006), 747-779 | MR | Zbl

[23] C.-S. Lin, W.-M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27 | MR | Zbl

[24] F. Lin, Y. Yang, Gauged harmonic maps, Born–Infeld electromagnetism, and magnetic vortices, CPAM 56 (2003), 1631-1665 | MR | Zbl

[25] D. Mugnai, Coupled Klein–Gordon and Born–Infeld type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 1519-1528 | MR | Zbl

[26] W.-M. Ni, J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, CPAM XLVIII (1995), 731-768 | MR | Zbl

[27] N. Ogawa, Chaplygin Gas and Brane, Proceedings of the 8th International Conference on Geometry Integrability & Quantization (June 2007), 279-291 | MR

[28] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30 | MR | Zbl

[29] J. Polchinski, TASI lectures on D-branes, arXiv:hep-th/9611050 R. Argurio, Brane physics in M-theory, hep-th/9807171 K.G. Savvidy, Born–Infeld action in string theory, hep-th/9906075

[30] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Ser. Math. vol. 65 (1986) | MR

[31] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edition

[32] N. Seilberg, E. Witten, String theory and noncommutative geometry, JHEP 9909 (1999), 032 | MR

[33] W.-M. Ni, I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, CPAM 44 (1991), 819-851 | MR | Zbl

[34] Y. Yang, Classical solutions in the Born–Infeld theory, Proceedings: Mathematical, Physical and Engineering Sciences 456 no. 1995 (2000), 615-640 | MR | Zbl

[35] X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear Anal. 12 (1988), 1297-1316 | MR | Zbl

[36] Z. Zhang, K. Li, Spike-layered solutions of singularly perturbed quasilinear Dirichlet problems, J. Math. Anal. Appl. 283 (2003), 667-680 | MR | Zbl

  • Shen, Zhuoling; Zhang, Guoqing Some existence results of solitary waves for coupled Klein–Gordon and Born–Infeld equations, Complex Variables and Elliptic Equations (2025), p. 1 | DOI:10.1080/17476933.2024.2441314
  • Azzollini, Antonio The Schrödinger–Born–Infeld system: Attractive case, Applied Mathematics Letters, Volume 158 (2024), p. 109259 | DOI:10.1016/j.aml.2024.109259
  • Liao, Mao-Jun; Li, Lin; Chen, Shang-Jie; O'Regan, Donal Existence of nontrivial solutions for fractional Klein–Gordon equation coupled with Born–Infeld theory with critical exponents, Complex Variables and Elliptic Equations (2024), p. 1 | DOI:10.1080/17476933.2024.2394870
  • Wang, Lixia; Zhao, Pingping; Zhang, Dong Existence of high energy solutions for superlinear coupled Klein-Gordons and Born-Infeld equations, Electronic Journal of Differential Equations, Volume 2024 (2024) no. 01-??, p. 18 | DOI:10.58997/ejde.2024.18
  • Fei, Jiayi; Zhang, Qiongfen On solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory with Berestycki–Lions conditions on R3, Electronic Research Archive, Volume 32 (2024) no. 4, p. 2363 | DOI:10.3934/era.2024108
  • Wang, Lixia; Xiong, Chunlian; Zhang, Dong MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY, Journal of Applied Analysis Computation, Volume 14 (2024) no. 1, p. 84 | DOI:10.11948/20230034
  • He, Chuan-Min; Li, Lin; Chen, Shang-Jie Nontrivial solution for Klein-Gordon equation coupled with Born-Infeld theory with critical growth, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0282
  • Wang, Fenqi; Sun, Jijiang Multiple Solutions for a Nonhomogeneous Schrödinger–Born–Infeld System, Bulletin of the Malaysian Mathematical Sciences Society, Volume 46 (2023) no. 4 | DOI:10.1007/s40840-023-01544-9
  • Du, Yao; Su, Jiabao; Wang, Cong The quasilinear Schrödinger–Poisson system, Journal of Mathematical Physics, Volume 64 (2023) no. 7 | DOI:10.1063/5.0150174
  • Zhang, Ziheng; Liu, Jianlun Existence and Multiplicity of Sign-Changing Solutions for Klein–Gordon Equation Coupled with Born–Infeld Theory with Subcritical Exponent, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 1 | DOI:10.1007/s12346-022-00709-4
  • Wang, Fenqi; Sun, Jijiang; Chen, Jianhua Existence and asymptotic behavior of solutions for the Schrödinger–Born–Infeld system with steep potential well, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 6 | DOI:10.1007/s00033-023-02138-y
  • He, Chuan-Min; Li, Lin; Chen, Shang-Jie; O’Regan, Donal Ground state solution for the nonlinear Klein–Gordon equation coupled with Born–Infeld theory with critical exponents, Analysis and Mathematical Physics, Volume 12 (2022) no. 2 | DOI:10.1007/s13324-022-00661-1
  • Wang, Lixia; Xiong, Chunlian; Zhao, Pingping Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born-Infeld type equations, Electronic Journal of Differential Equations, Volume 2022 (2022) no. 01-87, p. 74 | DOI:10.58997/ejde.2022.74
  • Guo, Z.; Zhang, X. On the Solitary Solutions for the Nonlinear Klein–Gordon Equation Coupled with Born–Infeld Theory, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 57 (2022) no. 3, p. 145 | DOI:10.3103/s1068362322030049
  • Guo, Z.; Zhang, X. On the solitary solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory, Proceedings of NAS RA. Mathematics (2022), p. 18 | DOI:10.54503/0002-3043-2022.57.3-18-31
  • Zhang, Xin Solitary waves for a fractional Klein–Gordon–Maxwell equations, Electronic Journal of Qualitative Theory of Differential Equations (2021) no. 94, p. 1 | DOI:10.14232/ejqtde.2021.1.94
  • Liu, Zhisu; Siciliano, Gaetano A perturbation approach for the Schrödinger-Born-Infeld system: Solutions in the subcritical and critical case, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 2, p. 125326 | DOI:10.1016/j.jmaa.2021.125326
  • Albuquerque, Francisco; Chen, Shang-Jie; Li, Lin Solitary wave of ground state type for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in ℝ2, Electronic Journal of Qualitative Theory of Differential Equations (2020) no. 12, p. 1 | DOI:10.14232/ejqtde.2020.1.12
  • Bonheure, Denis; Iacopetti, Alessandro On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 697 | DOI:10.1007/s00205-018-1331-4
  • Azzollini, Antonio; Pomponio, Alessio; Siciliano, Gaetano On the Schrödinger–Born–Infeld System, Bulletin of the Brazilian Mathematical Society, New Series, Volume 50 (2019) no. 1, p. 275 | DOI:10.1007/s00574-018-0111-y
  • d’Avenia, Pietro; Mederski, Jarosław; Pomponio, Alessio Vortex ground states for Klein-Gordon-Maxwell-Proca type systems, Journal of Mathematical Physics, Volume 58 (2017) no. 4 | DOI:10.1063/1.4982038
  • Bonheure, Denis; d’Avenia, Pietro; Pomponio, Alessio On the Electrostatic Born–Infeld Equation with Extended Charges, Communications in Mathematical Physics, Volume 346 (2016) no. 3, p. 877 | DOI:10.1007/s00220-016-2586-y
  • Colin, Mathieu; Watanabe, Tatsuya Cauchy problem for the nonlinear Klein–Gordon equation coupled with the Maxwell equation, Journal of Mathematical Analysis and Applications, Volume 443 (2016) no. 2, p. 778 | DOI:10.1016/j.jmaa.2016.05.057
  • Teng, Kaimin; Zhang, Kejing Existence of solitary wave solutions for the nonlinear Klein–Gordon equation coupled with Born–Infeld theory with critical Sobolev exponent, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 12, p. 4241 | DOI:10.1016/j.na.2011.04.002

Cité par 24 documents. Sources : Crossref