For a smooth and a family of L-periodic -functions with , the basic problem is to understand the weak* limit as of L-periodic minimizers of
Keywords: Phase transitions, Cahn–Hilliard, Singular limits, Relaxed minimizers, Regularized minimizers, Minimal jump principle, Gamma limits
@article{AIHPC_2010__27_2_655_0, author = {Plotnikov, P.I. and Toland, J.F.}, title = {Phase transitions with a minimal number of jumps in the singular limits of higher order theories}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {655--691}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.002}, zbl = {1192.82034}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.002/} }
TY - JOUR AU - Plotnikov, P.I. AU - Toland, J.F. TI - Phase transitions with a minimal number of jumps in the singular limits of higher order theories JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 655 EP - 691 VL - 27 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.002/ DO - 10.1016/j.anihpc.2009.11.002 LA - en ID - AIHPC_2010__27_2_655_0 ER -
%0 Journal Article %A Plotnikov, P.I. %A Toland, J.F. %T Phase transitions with a minimal number of jumps in the singular limits of higher order theories %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 655-691 %V 27 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.002/ %R 10.1016/j.anihpc.2009.11.002 %G en %F AIHPC_2010__27_2_655_0
Plotnikov, P.I.; Toland, J.F. Phase transitions with a minimal number of jumps in the singular limits of higher order theories. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 2, pp. 655-691. doi : 10.1016/j.anihpc.2009.11.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.002/
[1] On the singular limit in phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 141-178 | EuDML | Numdam | MR | Zbl
, ,[2] A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 27-42 | MR | Zbl
, ,[3] Mathematical Methods of Classical Mechanics, Grad. Texts in Math. vol. 60, Springer, New York (1989) | MR
,[4] Γ-Convergence for Beginners, Oxford Univ. Press, Oxford (2002) | MR
,[5] Structured phase transitions on a finite interval, Arch. Ration. Mech. Anal. 86 (1984), 317-351 | MR | Zbl
, , ,[6] Singular perturbation problems in the calculus of variations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 11 (1984), 395-430 | EuDML | Numdam | MR
, ,[7] Equilibrium of bars, J. Elasticity 5 (1975), 191-201 | MR | Zbl
,[8] Modern Methods in the Calculus of Variations: Spaces, Springer, New York (2007) | MR | Zbl
, ,[9] Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994), 405-435 | MR | Zbl
, ,[10] Qualitative behaviour of local minimizers of singular perturbed variational problems, J. Elasticity 87 (2007), 73-94 | MR | Zbl
,[11] Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. (5) 14 (1977), 285-299 | MR | Zbl
, ,[12] Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), 169-204 | MR | Zbl
,[13] P.I. Plotnikov, J.F. Toland, Strain-gradient theory of hydroelastic travelling waves and their singular limits, University of Bath, Preprint, 2009
[14] Variational Methods, Ergeb. Math. Grenzgeb. vol. 34, Springer-Verlag, Berlin (2008) | MR
,Cited by Sources: