We prove that weak solutions of the slightly supercritical quasi-geostrophic equation become smooth for large time. The proof uses ideas from a recent article of Caffarelli and Vasseur and is based on an argument in the style of De Giorgi.
Dans cet article, nous montrons que les solutions faibles de l'équation quasi-géostrophique légèrement sur-critique deviennent régulières en temps grand. La démonstration utilise des idées d'un article récent de Caffarelli et Vasseur et repose sur un argument de type de De Giorgi.
@article{AIHPC_2010__27_2_693_0, author = {Silvestre, Luis}, title = {Eventual regularization for the slightly supercritical quasi-geostrophic equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {693--704}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.006}, mrnumber = {2595196}, zbl = {1187.35186}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/} }
TY - JOUR AU - Silvestre, Luis TI - Eventual regularization for the slightly supercritical quasi-geostrophic equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 693 EP - 704 VL - 27 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/ DO - 10.1016/j.anihpc.2009.11.006 LA - en ID - AIHPC_2010__27_2_693_0 ER -
%0 Journal Article %A Silvestre, Luis %T Eventual regularization for the slightly supercritical quasi-geostrophic equation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 693-704 %V 27 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/ %R 10.1016/j.anihpc.2009.11.006 %G en %F AIHPC_2010__27_2_693_0
Silvestre, Luis. Eventual regularization for the slightly supercritical quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 2, pp. 693-704. doi : 10.1016/j.anihpc.2009.11.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.006/
[1] An extension problem related to the fractional laplacian, Comm. Partial Differential Equations 32 no. 7–9 (2007), 1245-1260 | MR | Zbl
, ,[2] Luis Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., in press | MR
[3] Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincare Anal. Non Lineaire 25 no. 6 (2008), 1103-1110 | EuDML | Numdam | MR | Zbl
, ,[4] Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), 159-180 | EuDML | Numdam | MR | Zbl
, ,[5] Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 no. 5 (1999), 937-948 | MR | Zbl
, ,[6] A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR | Zbl
, ,[7] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl
, , ,Cited by Sources: