In this paper we prove the existence of a nontrivial solution to the nonlinear Schrödinger–Maxwell equations in , assuming on the nonlinearity the general hypotheses introduced by Berestycki and Lions.
Dans cet article on démontre l'existence d'une solution non-banale et positive pour les équations non-linéaires de Schrödinger–Maxwell dans en supposant que le terme non-linéaire satisfait les hypothèses introduites par Berestycki et Lions.
@article{AIHPC_2010__27_2_779_0, author = {Azzollini, A. and d'Avenia, P. and Pomponio, A.}, title = {On the {Schr\"odinger{\textendash}Maxwell} equations under the effect of a general nonlinear term}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {779--791}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.012}, mrnumber = {2595202}, zbl = {1187.35231}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.012/} }
TY - JOUR AU - Azzollini, A. AU - d'Avenia, P. AU - Pomponio, A. TI - On the Schrödinger–Maxwell equations under the effect of a general nonlinear term JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 779 EP - 791 VL - 27 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.012/ DO - 10.1016/j.anihpc.2009.11.012 LA - en ID - AIHPC_2010__27_2_779_0 ER -
%0 Journal Article %A Azzollini, A. %A d'Avenia, P. %A Pomponio, A. %T On the Schrödinger–Maxwell equations under the effect of a general nonlinear term %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 779-791 %V 27 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.012/ %R 10.1016/j.anihpc.2009.11.012 %G en %F AIHPC_2010__27_2_779_0
Azzollini, A.; d'Avenia, P.; Pomponio, A. On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 2, pp. 779-791. doi : 10.1016/j.anihpc.2009.11.012. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.11.012/
[1] Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), 391-404 | MR | Zbl
, ,[2] Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90-108 | MR | Zbl
, ,[3] On the Schrödinger equation in under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (2009), 1361-1378 | MR | Zbl
, ,[4] An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283-293 | MR | Zbl
, ,[5] Existence of hylomorphic solitary waves in Klein–Gordon and in Klein–Gordon–Maxwell equations, Rend. Accad. Lincei 20 (2009), 243-279 | MR | Zbl
, ,[6] Solitons and the electromagnetic field, Math. Z. 232 (1999), 73-102 | MR | Zbl
, , , ,[7] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-345 | MR | Zbl
, ,[8] Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), 347-375 | MR | Zbl
, ,[9] A multiplicity result for the linear Schrödinger–Maxwell equations with negative potential, Ann. Polon. Math. 79 (2002), 21-30 | MR | Zbl
,[10] A multiplicity result for the nonlinear Schrödinger–Maxwell equations, Commun. Appl. Anal. 7 (2003), 417-423 | MR | Zbl
,[11] Solitary waves for Maxwell–Schrödinger equations, Electron. J. Differential Equations 94 (2004), 1-31 | EuDML | MR | Zbl
, ,[12] Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893-906 | MR | Zbl
, ,[13] Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307-322 | MR | Zbl
, ,[14] Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002), 177-192 | MR | Zbl
,[15] On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on , Proc. Roy. Soc. Edinburgh Sect. A Math. 129 (1999), 787-809 | MR | Zbl
,[16] Local condition insuring bifurcation from the continuous spectrum, Math. Z. 232 (1999), 651-664 | MR | Zbl
,[17] An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006), 813-840 | MR | Zbl
, ,[18] A positive solution for a nonlinear Schrödinger equation on , Indiana Univ. Math. J. 54 (2005), 443-464 | MR | Zbl
, ,[19] Y. Jiang, H.S. Zhou, Bound states for a stationary nonlinear Schrödinger–Poisson system with sign-changing potential in , preprint | MR
[20] On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations, Nonlinear Anal. Theory Methods Appl. 67 (2007), 1445-1456 | MR | Zbl
,[21] Existence and stability of standing waves for Schrödinger–Poisson–Slater equation, Adv. Nonlinear Stud. 7 (2007), 403-437 | MR | Zbl
,[22] Neumann condition in the Schrödinger–Maxwell system, Topol. Methods Nonlinear Anal. 29 (2007), 251-264 | MR | Zbl
, ,[23] A. Pomponio, S. Secchi, A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities, preprint | MR
[24] The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Func. Anal. 237 (2006), 655-674 | MR | Zbl
,[25] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162 | MR | Zbl
,[26] On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581 | EuDML | MR | Zbl
,[27] Positive solution for a nonlinear stationary Schrödinger–Poisson system in , Discrete Contin. Dyn. Syst. 18 (2007), 809-816 | MR | Zbl
, ,[28] On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl. 346 (2008), 155-169 | MR | Zbl
, ,Cited by Sources: