Nous considérons le comportement en temps grand de la moyenne temporelle de solutions d'équations de Hamilton–Jacobi pour un hamiltonien non convexe et non coercif dans le tore
The paper investigates the long time average of the solutions of Hamilton–Jacobi equations with a noncoercive, nonconvex Hamiltonian in the torus
@article{AIHPC_2010__27_3_837_0, author = {Cardaliaguet, Pierre}, title = {Ergodicity of {Hamilton{\textendash}Jacobi} equations with a noncoercive nonconvex {Hamiltonian} in $ {\mathbb{R}}^{2}/{\mathbb{Z}}^{2}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {837--856}, publisher = {Elsevier}, volume = {27}, number = {3}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.015}, mrnumber = {2629882}, zbl = {1201.35089}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.015/} }
TY - JOUR AU - Cardaliaguet, Pierre TI - Ergodicity of Hamilton–Jacobi equations with a noncoercive nonconvex Hamiltonian in $ {\mathbb{R}}^{2}/{\mathbb{Z}}^{2}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 837 EP - 856 VL - 27 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.015/ DO - 10.1016/j.anihpc.2009.11.015 LA - en ID - AIHPC_2010__27_3_837_0 ER -
%0 Journal Article %A Cardaliaguet, Pierre %T Ergodicity of Hamilton–Jacobi equations with a noncoercive nonconvex Hamiltonian in $ {\mathbb{R}}^{2}/{\mathbb{Z}}^{2}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 837-856 %V 27 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.015/ %R 10.1016/j.anihpc.2009.11.015 %G en %F AIHPC_2010__27_3_837_0
Cardaliaguet, Pierre. Ergodicity of Hamilton–Jacobi equations with a noncoercive nonconvex Hamiltonian in $ {\mathbb{R}}^{2}/{\mathbb{Z}}^{2}$. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 837-856. doi : 10.1016/j.anihpc.2009.11.015. https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.015/
[1] Ergodic problems in differential games, , , (ed.), Advances in Dynamic Game Theory, Ann. Internat. Soc. Dynam. Games vol. 9, Birkhäuser, Boston (2007), 131-152
, ,[2] O. Alvarez, M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman–Isaacs equations, Mem. Amer. Math. Soc., in press | MR
[3] Hamilton–Jacobi equations with partial gradient and application to homogenization, Comm. Partial Differential Equations 26 no. 5–6 (2001), 983-1002 | MR | Zbl
, ,[4] On ergodic stochastic control, Comm. Partial Differential Equations 23 no. 11–12 (1998), 2187-2217 | MR | Zbl
, ,[5] The value function of singularly perturbed control systems, Appl. Math. Optim. 41 no. 3 (2000), 425-445 | MR | Zbl
, ,[6] On differential games with long-time-average cost, Advances in Dynamic Games and Their Applications, Ann. Internat. Soc. Dynam. Games vol. 10, Birkhäuser Boston, Boston, MA (2009), 3-18 | MR | Zbl
,[7] Some homogenization results for non-coercive Hamilton–Jacobi equations, Calc. Var. Partial Differential Equations 30 no. 4 (2007), 449-466 | MR | Zbl
,[8] Homogenization of Hamilton–Jacobi equations in the Heisenberg group, Commun. Pure Appl. Anal. 2 no. 4 (2003), 461-479 | MR | Zbl
, ,[9] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67 | Zbl
, , ,[10] Hamilton–Jacobi methods for vakonomic mechanics, NoDEA Nonlinear Differential Equations Appl. 14 no. 3–4 (2007), 233-257 | MR | Zbl
,
[11] Homogenization of first-order equations with
[12] P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations, unpublished work
[13] M. Quincampoix, J. Renault, On the existence of a limit value in some non-expansive optimal control problems, preprint hal-00377857 | MR | Zbl
Cité par Sources :