We prove that the quintic Schrödinger equation with Dirichlet boundary conditions is locally well posed for
@article{AIHPC_2010__27_5_1153_0, author = {Ivanovici, Oana and Planchon, Fabrice}, title = {On the energy critical {Schr\"odinger} equation in {3\protect\emph{D}} non-trapping domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1153--1177}, publisher = {Elsevier}, volume = {27}, number = {5}, year = {2010}, doi = {10.1016/j.anihpc.2010.04.001}, mrnumber = {2683754}, zbl = {1200.35066}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2010.04.001/} }
TY - JOUR AU - Ivanovici, Oana AU - Planchon, Fabrice TI - On the energy critical Schrödinger equation in 3D non-trapping domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1153 EP - 1177 VL - 27 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2010.04.001/ DO - 10.1016/j.anihpc.2010.04.001 LA - en ID - AIHPC_2010__27_5_1153_0 ER -
%0 Journal Article %A Ivanovici, Oana %A Planchon, Fabrice %T On the energy critical Schrödinger equation in 3D non-trapping domains %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1153-1177 %V 27 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2010.04.001/ %R 10.1016/j.anihpc.2010.04.001 %G en %F AIHPC_2010__27_5_1153_0
Ivanovici, Oana; Planchon, Fabrice. On the energy critical Schrödinger equation in 3D non-trapping domains. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 5, pp. 1153-1177. doi : 10.1016/j.anihpc.2010.04.001. https://www.numdam.org/articles/10.1016/j.anihpc.2010.04.001/
[1] Global existence for defocusing cubic NLS and Gross–Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89 no. 4 (2008), 335-354 | MR | Zbl
,[2] On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 no. 3 (2004), 295-318 | EuDML | Numdam | MR | Zbl
, , ,[3] Estimations de Strichartz pour des perturbations à longue portée de l'opérateur de Schrödinger, Séminaire: Équations aux Dérivées Partielles, 2001–2002, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2002) | EuDML
,[4] Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc. 21 no. 3 (2008), 831-845 | MR | Zbl
, , ,[5] Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications, J. Funct. Anal. 236 no. 1 (2006), 265-298 | MR | Zbl
, ,[6] Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math. 131 no. 6 (2009), 1715-1742 | MR | Zbl
, ,
[7] The Cauchy problem for the critical nonlinear Schrödinger equation in
[8] Maximal functions associated to filtrations, J. Funct. Anal. 179 no. 2 (2001), 409-425 | Zbl
, ,
[9] Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in
[10] The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 no. 4 (1985), 309-327 | EuDML | Numdam | Zbl
, ,[11] Precise smoothing effect in the exterior of balls, Asymptot. Anal. 53 no. 4 (2007), 189-208 | Zbl
,[12] Counter example to Strichartz estimates for the wave equation in domains, Math. Ann. 347 (2010), 627-673, http://dx.doi.org/10.1007/s00208-009-0454-1 | Zbl
,[13] On the Schrodinger equation outside strictly convex obstacles, arXiv:0809.1060 [math.AP] (2008) | Zbl
,[14] Square function and heat flow estimates on domains, arXiv:0812.2733 [math.AP] (2008)
, ,[15] Dispersive estimates and the 2D cubic NLS equation, J. Anal. Math. 86 (2002), 319-334 | Zbl
,[16] Bilinear virial identities and applications, Ann. Sci. École. Norm. Sup. 42 (2009), 261-290 | EuDML | Numdam | Zbl
, ,[17] On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 no. 4 (1995), 879-916 | Zbl
, ,
[18] On the
[19] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 no. 7–8 (2002), 1337-1372 | Zbl
, ,- Some remarks on Riesz transforms on exterior Lipschitz domains, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2025.19
- Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation, Advances in Computational Mathematics, Volume 49 (2023) no. 5 | DOI:10.1007/s10444-023-10055-x
- Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains, Journal of Mathematical Physics, Volume 64 (2023) no. 10 | DOI:10.1063/5.0101506
- Scattering for 3D Cubic Focusing NLS on the Domain Outside a Convex Obstacle Revisited, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 6, p. 1054 | DOI:10.1007/s10114-022-1058-x
- Threshold solutions in the focusing 3D cubic NLS equation outside a strictly convex obstacle, Journal of Functional Analysis, Volume 282 (2022) no. 5, p. 109326 | DOI:10.1016/j.jfa.2021.109326
- Higher dimensional vortex standing waves for nonlinear Schrödinger equations, Communications in Partial Differential Equations, Volume 41 (2016) no. 3, p. 398 | DOI:10.1080/03605302.2015.1127966
- Riesz Transforms Outside a Convex Obstacle, International Mathematics Research Notices, Volume 2016 (2016) no. 19, p. 5875 | DOI:10.1093/imrn/rnv338
- Global regularity for the energy-critical NLS on
, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 2, p. 315 | DOI:10.1016/j.anihpc.2013.03.006 - Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Annals of Mathematics, Volume 180 (2014) no. 1, p. 323 | DOI:10.4007/annals.2014.180.1.7
- Asymptotics of wave models for non star-shaped geometries, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 2, p. 347 | DOI:10.3934/dcdss.2014.7.347
- Pseudodifferential Operators Associated with a Semigroup of Operators, Journal of Fourier Analysis and Applications, Volume 20 (2014) no. 1, p. 91 | DOI:10.1007/s00041-013-9309-y
- On the cubic NLS on 3D compact domains, Journal of the Institute of Mathematics of Jussieu, Volume 13 (2014) no. 1, p. 1 | DOI:10.1017/s1474748013000017
- Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 5, p. 935 | DOI:10.1016/j.anihpc.2012.12.005
- On the non-homogeneous boundary value problem for Schrödinger equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 9, p. 3861 | DOI:10.3934/dcds.2013.33.3861
- Global Well-Posedness of the Cubic Nonlinear Schrödinger Equation on Closed Manifolds, Communications in Partial Differential Equations, Volume 37 (2012) no. 7, p. 1186 | DOI:10.1080/03605302.2011.642449
- Algebra properties for Sobolev spaces — applications to semilinear PDEs on manifolds, Journal d'Analyse Mathématique, Volume 118 (2012) no. 2, p. 509 | DOI:10.1007/s11854-012-0043-1
- Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Mathematische Annalen, Volume 354 (2012) no. 4, p. 1397 | DOI:10.1007/s00208-011-0772-y
Cité par 17 documents. Sources : Crossref