In this paper the reconstruction of damaged piecewice constant color images is studied using an RGB total variation based model for colorization/inpainting. In particular, it is shown that when color is known in a uniformly distributed region, then reconstruction is possible with maximal fidelity.
Mots clés : Energy minimization, Calibrations, RGB total variation models, Colorization, Inpainting, Image restoration
@article{AIHPC_2010__27_5_1291_0, author = {Fonseca, I. and Leoni, G. and Maggi, F. and Morini, M.}, title = {Exact reconstruction of damaged color images using a total variation model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1291--1331}, publisher = {Elsevier}, volume = {27}, number = {5}, year = {2010}, doi = {10.1016/j.anihpc.2010.06.004}, mrnumber = {2683761}, zbl = {1198.49045}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2010.06.004/} }
TY - JOUR AU - Fonseca, I. AU - Leoni, G. AU - Maggi, F. AU - Morini, M. TI - Exact reconstruction of damaged color images using a total variation model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1291 EP - 1331 VL - 27 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2010.06.004/ DO - 10.1016/j.anihpc.2010.06.004 LA - en ID - AIHPC_2010__27_5_1291_0 ER -
%0 Journal Article %A Fonseca, I. %A Leoni, G. %A Maggi, F. %A Morini, M. %T Exact reconstruction of damaged color images using a total variation model %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1291-1331 %V 27 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2010.06.004/ %R 10.1016/j.anihpc.2010.06.004 %G en %F AIHPC_2010__27_5_1291_0
Fonseca, I.; Leoni, G.; Maggi, F.; Morini, M. Exact reconstruction of damaged color images using a total variation model. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 5, pp. 1291-1331. doi : 10.1016/j.anihpc.2010.06.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2010.06.004/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl
, , ,[2] Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. 135 (1983), 293-318 | MR | Zbl
,[3] Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-556 | MR | Zbl
,[4] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004), 439-505 | MR | Zbl
, , ,[5] The Elements of Real Analysis, John Wiley & Sons, New York, London, Sydney (1976) | MR | Zbl
,[6] The total variation flow in , J. Differ. Equations 184 (2002), 475-525 | MR | Zbl
, , ,[7] J. Buriánek, D. Sýkora, J. Žára, Unsupervised colorization of black-and-white cartoons, in: Proc. 3rd Int. Symp. Non-Photorealistic Animation and Rendering, 2004, pp. 121–127.
[8] Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math. 62 (2001/2002), 1019-1043 | MR | Zbl
, ,[9] Variational image inpainting, Comm. Pure Appl. Math. 58 (2005), 579-619 | MR | Zbl
, ,[10] D. Cohen-Or, R. Irony, D. Lischinski, Colorization by example, in: Proc. Eurograph. Symp. Rendering, 2005, pp. 201–210.
[11] Functions locally almost 1-harmonic, J. Appl. Anal. 83 (2004), 865-896 | MR | Zbl
,[12] Convex Analysis and Variational Problems, Classics in Applied Mathematics vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999) | MR | Zbl
, ,[13] Modern Methods in the Calculus of Variations: Spaces, Springer Monographs in Mathematics, Springer, New York (2007) | MR | Zbl
, ,[14] Nonlinear projection recovery in digital inpainting for color image restoration, J. Math. Imaging Vision 24 (2006), 359-373 | MR
,[15] Faithful recovery of vector valued functions from incomplete data, Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2009), 116-127
,[16] Restoration of color images by vector valued BV functions and variational calculus, SIAM J. Appl. Math. 68 (2007), 437-460 | MR | Zbl
, ,[17] Variational models for image colorization via chromaticity and brightness decomposition, IEEE Trans. Image Process. 16 (2007), 2251-2261 | MR
, ,[18] Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem, Commun. Contemp. Math. 9 (2007), 515-543 | MR | Zbl
, ,[19] Ber die zusammenziehende und Lipschitzsche Transformationen, Fund. Math. 22 (1934), 77-108 | EuDML | JFM
,[20] Colorization using optimization, Proc. SIGGRAPH Conf. vol. 23 (2004), 689-694
, , ,[21] Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842 | MR | Zbl
,[22] Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), 259-268 | MR | Zbl
, , ,[23] Inpainting the colors, Proc. IEEE Int. Conf. Image Processing vol. 2 (2005), 698-701
,[24] Fast image and video colorization using chrominance blending, IEEE Trans. Image Process. 15 (2006), 1120-1129
, ,[25] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89 | JFM | MR
,Cité par Sources :