Entropy solution theory for fractional degenerate convection–diffusion equations
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 413-441.
corrigé par Erratum

We study a class of degenerate convection–diffusion equations with a fractional non-linear diffusion term. This class is a new, but natural, generalization of local degenerate convection–diffusion equations, and include anomalous diffusion equations, fractional conservation laws, fractional porous medium equations, and new fractional degenerate equations as special cases. We define weak entropy solutions and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable solutions. Then we introduce a new monotone conservative numerical scheme and prove convergence toward the entropy solution in the class of bounded integrable BV functions. The well-posedness results are then extended to non-local terms based on general Lévy operators, connections to some fully non-linear HJB equations are established, and finally, some numerical experiments are included to give the reader an idea about the qualitative behavior of solutions of these new equations.

DOI : 10.1016/j.anihpc.2011.02.006
Classification : 35R09, 35K65, 35A01, 35A02, 65M06, 65M12, 35B45, 35K59, 35D30, 35K57, 35R11
Mots clés : Degenerate convection–diffusion equations, Fractional/fractal conservation laws, Entropy solutions, Uniqueness, Numerical method, Convergence
@article{AIHPC_2011__28_3_413_0,
     author = {Cifani, Simone and Jakobsen, Espen R.},
     title = {Entropy solution theory for fractional degenerate convection{\textendash}diffusion equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {413--441},
     publisher = {Elsevier},
     volume = {28},
     number = {3},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.02.006},
     mrnumber = {2795714},
     zbl = {1217.35204},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.006/}
}
TY  - JOUR
AU  - Cifani, Simone
AU  - Jakobsen, Espen R.
TI  - Entropy solution theory for fractional degenerate convection–diffusion equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 413
EP  - 441
VL  - 28
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.006/
DO  - 10.1016/j.anihpc.2011.02.006
LA  - en
ID  - AIHPC_2011__28_3_413_0
ER  - 
%0 Journal Article
%A Cifani, Simone
%A Jakobsen, Espen R.
%T Entropy solution theory for fractional degenerate convection–diffusion equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 413-441
%V 28
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.006/
%R 10.1016/j.anihpc.2011.02.006
%G en
%F AIHPC_2011__28_3_413_0
Cifani, Simone; Jakobsen, Espen R. Entropy solution theory for fractional degenerate convection–diffusion equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 413-441. doi : 10.1016/j.anihpc.2011.02.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2011.02.006/

[1] N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ. 7 no. 1 (2007), 145-175 | MR | Zbl

[2] N. Alibaud, B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 no. 4 (2010), 997-1016 | Numdam | MR | Zbl

[3] N. Alibaud, J. Droniou, J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 no. 3 (2007), 479-499 | MR | Zbl

[4] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Stud. Adv. Math. vol. 116, Cambridge University Press, Cambridge (2009) | MR | Zbl

[5] P. Biler, C. Imbert, G. Karch, Fractal porous media equation, arXiv:1001.0910

[6] M.C. Bustos, F. Concha, R. Bürger, E.M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic Publishers (1999) | MR | Zbl

[7] L.A. Caffarelli, J.L. Vazquez, Nonlinear porous medium flow with fractional potential pressure, arXiv:1001.0410 | MR | Zbl

[8] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 no. 4 (1999), 269-361 | MR | Zbl

[9] S. Cifani, E.R. Jakobsen, On the spectral vanishing viscosity method for periodic fractional conservation laws, submitted for publication, 2010. | MR

[10] S. Cifani, E.R. Jakobsen, K.H. Karlsen, The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal. (2010), doi:10.1093/imanum/drq006. | MR

[11] S. Cifani, E.R. Jakobsen, K.H. Karlsen, The discontinuous Galerkin method for fractional degenerate convection–diffusion equations, submitted for publication, 2010. | MR

[12] P. Clavin, Instabilities and nonlinear patterns of overdriven detonations in gases, Nonlinear PDEʼs in Condensed Matter and Reactive Flows, Kluwer (2002), 49-97 | Zbl

[13] B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for time-dependent convection–diffusion systems, SIAM J. Numer. Anal. 35 no. 6 (1998), 2440-2463 | MR | Zbl

[14] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC (2004) | MR | Zbl

[15] M.G. Crandall, L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 no. 3 (1980), 385-390 | MR | Zbl

[16] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer (2005) | MR | Zbl

[17] A. De Pablo, F. Quiros, A. Rodriguez, J.L. Vazquez, A fractional porous medium equation, arXiv:1001.2383 | MR | Zbl

[18] A. Dedner, C. Rohde, Numerical approximation of entropy solutions for hyperbolic integro-differential equations, Numer. Math. 97 no. 3 (2004), 441-471 | MR | Zbl

[19] J. Droniou, A numerical method for fractal conservation laws, Math. Comp. 79 (2010), 95-124 | MR | Zbl

[20] J. Droniou, T. Gallouët, J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 4 no. 3 (2003), 479-499 | MR | Zbl

[21] J. Droniou, C. Imbert, Fractal first order partial differential equations, Arch. Ration. Mech. Anal. 182 no. 2 (2006), 299-331 | MR | Zbl

[22] M.S. Espedal, K.H. Karlsen, Numerical Solution of Reservoir Flow Models Based on Large Time Step Operator Splitting Algorithms, Lecture Notes in Math. vol. 1734, Springer, Berlin (2000) | MR | Zbl

[23] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal. vol. VII, North-Holland (2000), 713-1020 | MR | Zbl

[24] L.C. Evans, Partial Differential Equations, Amer. Math. Soc. (1998) | MR

[25] S. Evje, K.H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection–diffusion equations, SIAM J. Numer. Anal. 37 no. 6 (2000), 1838-1860 | MR | Zbl

[26] H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Appl. Math. Sci. vol. 152, Springer (2007) | MR | Zbl

[27] W. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer (2006) | MR | Zbl

[28] E.R. Jakobsen, K.H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differential Equations 212 no. 2 (2005), 278-318 | MR | Zbl

[29] V. Jakubowski, P. Wittbold, On a nonlinear elliptic–parabolic integro-differential equation with L 1 -data, J. Differential Equations 197 no. 2 (2004), 427-445 | MR | Zbl

[30] Y. Jue, H. Liu, The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal. 47 no. 1 (2008/2009), 675-698 | MR | Zbl

[31] K.H. Karlsen, N.H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst. 9 no. 5 (2003), 1081-1104 | MR | Zbl

[32] K.H. Karlsen, S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic–parabolic equations, submitted for publication, 2009. | MR

[33] A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 211-240 | MR | Zbl

[34] S.N. Kružkov, First order quasi-linear equations in several independent variables, Mat. USSR Sb. 10 no. 2 (1970), 217-243 | Zbl

[35] P.-L. Lions, Generalized Solutions of Hamilton–Jacobi Equations, Res. Notes Math. vol. 69, Pitman (1982)

[36] O.A. OleĭNik, Discontinuous solutions of non-linear differential equations, Uspekhi Mat. Nauk 12 no. 3 (1957), 3-73 | MR

[37] C. Rohde, W.-A. Yong, The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem, J. Differential Equations 234 no. 1 (2007), 91-109 | MR | Zbl

[38] D. Serre, Systems of Conservation Laws 1, Cambridge University Press (1999) | MR

[39] J.L. Vazquez, The Porous Medium Equation, The Clarendon Press, Oxford University Press, Oxford (2007) | MR | Zbl

[40] G.B. Whitham, Linear and Nonlinear Waves, Wiley (1974) | MR | Zbl

[41] W. Woyczyński, Lévy processes in the physical sciences, Lévy Processes, Birkhäuser, Boston (2001), 241-266 | MR | Zbl

Cité par Sources :