Global weak solutions for a modified two-component Camassa–Holm equation
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 623-641.

Nous obtenons lʼexistence globale en temps de solutions faibles pour le problème de Cauchy dʼune équation modifiée Camassa–Holm à deux composantes. La solution faible globale est obtenue comme une limite de par approximation visqueuse. Les éléments clé dans notre analyse sont le théorème de Helly et certaines estimations a priori de supernorme dʼun seul côté et dʼintégrabilité dans lʼespace-temps des dérivées premières des solutions approchées.

We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa–Holm equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly theorem and some a priori one-sided supernorm and space–time higher integrability estimates on the first-order derivatives of approximation solutions.

DOI : 10.1016/j.anihpc.2011.04.003
Classification : 35G25, 35L05
Mots clés : A modified two-component Camassa–Holm equation, Well-posedness, Blow-up scenario, Strong solution, Global weak solution
@article{AIHPC_2011__28_4_623_0,
     author = {Guan, Chunxia and Yin, Zhaoyang},
     title = {Global weak solutions for a modified two-component {Camassa{\textendash}Holm} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {623--641},
     publisher = {Elsevier},
     volume = {28},
     number = {4},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.04.003},
     zbl = {1241.35159},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.003/}
}
TY  - JOUR
AU  - Guan, Chunxia
AU  - Yin, Zhaoyang
TI  - Global weak solutions for a modified two-component Camassa–Holm equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 623
EP  - 641
VL  - 28
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.003/
DO  - 10.1016/j.anihpc.2011.04.003
LA  - en
ID  - AIHPC_2011__28_4_623_0
ER  - 
%0 Journal Article
%A Guan, Chunxia
%A Yin, Zhaoyang
%T Global weak solutions for a modified two-component Camassa–Holm equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 623-641
%V 28
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.003/
%R 10.1016/j.anihpc.2011.04.003
%G en
%F AIHPC_2011__28_4_623_0
Guan, Chunxia; Yin, Zhaoyang. Global weak solutions for a modified two-component Camassa–Holm equation. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 623-641. doi : 10.1016/j.anihpc.2011.04.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.003/

[1] V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique es fluides parfaits, Ann. Inst. Fourier 16 (1966), 319-361 | EuDML | Numdam | Zbl

[2] R. Beals, D. Scattinger, J. Szmigielski, Acoustic scatting and the extended Korteweg–de Vries hierarchy, Adv. Math. 140 (1998), 190-206 | Zbl

[3] A. Bressan, A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2007), 215-239 | Zbl

[4] A. Bressan, A. Constantin, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. 5 (2007), 1-27 | Zbl

[5] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 | Zbl

[6] R. Camassa, D. Holm, J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33 | Zbl

[7] M. Chen, S.-Q. Liu, Y. Zhang, A 2-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys. 75 (2006), 1-15 | Zbl

[8] G.M. Coclite, H. Holden, K.H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal. 37 (2006), 1044-1069 | Zbl

[9] A. Constantin, The Hamiltonian structure of the Camassa–Holm equation, Expo. Math. 15 (1997), 53-85

[10] A. Constantin, On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352-363 | Zbl

[11] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321-362 | EuDML | Numdam | Zbl

[12] A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. Lond. Ser. A 457 (2001), 953-970 | Zbl

[13] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), 523-535 | Zbl

[14] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal. 193 (2009), 165-186 | Zbl

[15] A. Constantin, J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475-504 | Zbl

[16] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181 (1998), 229-243 | Zbl

[17] A. Constantin, J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75-91 | Zbl

[18] A. Constantin, V. Gerdjikov, R. Ivanov, Inverse scattering transform for the Camassa–Holm equation, Inverse Problems 22 (2006), 2197-2207 | Zbl

[19] A. Constantin, J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. 44 (2007), 423-431 | Zbl

[20] A. Constantin, R.S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175-211 | Zbl

[21] A. Constantin, B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109-122 | Zbl

[22] A. Constantin, H.P. Mckean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 | Zbl

[23] A. Constantin, L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), 45-61 | Zbl

[24] A. Constantin, W. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603-610 | Zbl

[25] A. Constantin, R.I. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A 372 (2008), 7129-7132 | Zbl

[26] R. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York (1995) | Zbl

[27] H. Dai, Model equations for nonlinear dispersive waves in compressible Mooney–Rivlin rod, Acta Mech. 127 (1998), 193-207 | MR | Zbl

[28] R. Danchin, A few remarks on the Camassa–Holm equation, Differential Integral Equations 14 (2001), 953-988 | MR | Zbl

[29] R.J. Diperna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev space, Invent. Math. 98 (1989), 511-547 | EuDML | MR | Zbl

[30] P.G. Drazin, R.S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge (1989) | Zbl

[31] J. Escher, O. Lechtenfeld, Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. 19 (2007), 493-513 | MR | Zbl

[32] A. Fokas, B. Fuchssteiner, Symplectic, their Bäcklund transformation and hereditary symmetries, Phys. D 4 (1981), 47-66 | MR | Zbl

[33] G. Grahovski, R.I. Ivanov, Generalized Fourier transform and perturbations to soliton equations, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), 579-595 | MR | Zbl

[34] C. Guan, Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations 248 (2010), 2003-2014 | MR | Zbl

[35] C. Guan, K.H. Karlsen, Z. Yin, Well-posedness and blow-up phenomena for a modified tow-component Camassa–Holm equation, Proceedings of the 2008–2009 Special Year in Nonlinear Partial Differential Equations, Contemp. Math. vol. 526, Amer. Math. Soc. (2010), 199-220 | Zbl

[36] H. Holden, X. Raynaud, Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ. 4 (2007), 39-64 | MR | Zbl

[37] H. Holden, X. Raynaud, Global conservative solutions of the Camassa–Holm equation – A Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), 1511-1549 | MR | Zbl

[38] H. Holden, X. Raynaud, Dissipative solutions for the Camassa–Holm equation, Discrete Contin. Dyn. Syst. 24 (2009), 1047-1112 | MR | Zbl

[39] D. Holm, J. Marsden, T. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), 1-81 | MR | Zbl

[40] D. Holm, L. Naraigh, C. Tronci, Singular solution of a modified two-component Camassa–Holm equation, Phys. Rev. E 79 (2009), 1-13 | MR

[41] I.P. Natanson, Theory of Functions of a Real Variable, vol. 1, Frederick Ungar Publishing Co., New York (1974) | MR

[42] J. Simon, Compact sets in the space L p (0,T;B), Ann. Mat. Pura Appl. (4) 146 (1987), 65-96 | MR | Zbl

[43] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Lecture Notes in Math. vol. 448, Springer-Verlag, Berlin (1975), 25-70 | MR

[44] T. Kato, G. Ponce, Commutator estimates and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988), 203-208 | MR

[45] B. Kolev, Poisson brackets in hydrodynamics, Discrete Contin. Dyn. Syst. 19 (2007), 555-574 | MR | Zbl

[46] M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics, Tsunami and Nonlinear Waves, Springer, Berlin (2007), 31-49 | MR | Zbl

[47] Y. Li, P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations 162 (2000), 27-63 | MR

[48] P.L. Lions, Mathematical Topics in Fluid Mechanics, vol. I. Incompressible Models, Oxford Lecture Ser. Math. Appl. vol. 3, Clarendon, Oxford University Press, New York (1996)

[49] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983) | MR | Zbl

[50] G.B. Whitham, Linear and Nonlinear Waves, J. Wiley and Sons, New York (1980) | MR | Zbl

[51] Z. Xin, P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), 1411-1433 | MR | Zbl

[52] Z. Yin, Well-posedness, global existence and blowup phenomena for an integrable shallow water equation, Discrete Contin. Dyn. Syst. 10 (2004), 393-411 | MR | Zbl

Cité par Sources :