The paper concerns multiplicity of vector solutions for nonlinear Schrödinger systems, in particular of semi-positive solutions. New variational techniques are developed to study the existence of this type of solutions. Asymptotic behaviors are examined in various parameter regimes including both attractive and repulsive cases.
@article{AIHPC_2013__30_1_1_0, author = {Sato, Yohei and Wang, Zhi-Qiang}, title = {On the multiple existence of semi-positive solutions for a nonlinear {Schr\"odinger} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--22}, publisher = {Elsevier}, volume = {30}, number = {1}, year = {2013}, doi = {10.1016/j.anihpc.2012.05.002}, mrnumber = {3011289}, zbl = {06154080}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.05.002/} }
TY - JOUR AU - Sato, Yohei AU - Wang, Zhi-Qiang TI - On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 1 EP - 22 VL - 30 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.05.002/ DO - 10.1016/j.anihpc.2012.05.002 LA - en ID - AIHPC_2013__30_1_1_0 ER -
%0 Journal Article %A Sato, Yohei %A Wang, Zhi-Qiang %T On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 1-22 %V 30 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.05.002/ %R 10.1016/j.anihpc.2012.05.002 %G en %F AIHPC_2013__30_1_1_0
Sato, Yohei; Wang, Zhi-Qiang. On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2012.05.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.05.002/
[1] Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006), 453-458 | MR | Zbl
, ,[2] Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), 67-82 | MR | Zbl
, ,[3] Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), 85-112 | MR | Zbl
, , ,[4] Solitons of linearly coupled systems of semilinear non-autonomous equations on , J. Funct. Anal. 254 (2008), 2816-2845 | MR | Zbl
, , ,[5] A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345-361 | MR | Zbl
, , ,[6] Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations 19 (2006), 200-207 | MR | Zbl
, ,[7] Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl. 2 (2007), 353-367 | MR | Zbl
, , ,[8] Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, J. Differential Equations 203 (2004), 292-312 | MR | Zbl
, ,[9] Multiple non semi-trivial solutions for elliptic systems, Adv. Nonlinear Stud. 12 (2012), 363-381 | MR | Zbl
, ,[10] On a new index theory and non semi-trivial solutions for elliptic systems, Discrete Contin. Dyn. Syst. 28 (2010), 809-826 | MR | Zbl
, , ,[11] Nehariʼs problem and competing species system, Ann. Inst. H. Poincaré 19 (2002), 871-888 | EuDML | Numdam | MR | Zbl
, , ,[12] Real analyticity and non-degeneracy, Math. Ann. 325 (2003), 369-392 | MR | Zbl
,[13] A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré 27 (2010), 953-969 | Numdam | MR | Zbl
, , ,[14] Morse–Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels, Časopis Pěst. Mat. 99 (1974), 217-243 | EuDML | MR | Zbl
, , , , ,[15] Ground state of N coupled nonlinear Schrödinger equations in , , Comm. Math. Phys. 255 (2005), 629-653 | MR | Zbl
, ,[16] Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403-439 | EuDML | Numdam | MR | Zbl
, ,[17] Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), 721-731 | MR | Zbl
, ,[18] Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud. 10 (2010), 175-193 | MR | Zbl
, ,[19] Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 299 (2006), 743-767 | MR | Zbl
, , ,[20] Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc. 10 (2008), 41-71 | EuDML | MR | Zbl
, , ,[21] Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc. 138 (2010), 1681-1692 | MR | Zbl
, ,[22] Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), 267-302 | MR | Zbl
, , , ,[23] Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. vol. 65 (1986) | MR | Zbl
,[24] Least energy solitary waves for a system of nonlinear Schrödinger equations in , Comm. Math. Phys. 271 (2007), 199-221 | MR | Zbl
,[25] Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Amer. Math. Soc. 361 (2009), 6205-6253 | MR | Zbl
, ,[26] Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), 279-300 | Numdam | MR | Zbl
, ,[27] Multipulse phase in k-mixtures of Bose–Einstein condenstates, Arch. Ration. Mech. Anal. 194 (2009), 717-741 | MR | Zbl
, ,[28] Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal. 37 (2011), 203-223 | MR | Zbl
, ,[29] Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl. 18 (2007), 279-293 | MR | Zbl
, ,[30] Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal. 190 (2008), 83-106 | MR | Zbl
, ,Cité par Sources :