In this paper we investigate the notion of flat current in the metric spaces setting, and in particular we provide a definition of size of a flat current with possibly infinite mass. Exploiting the special nature of the 0-dimensional slices and the theory of metric-space valued BV functions we prove that a k-current with finite size T sits on a countably -rectifiable set, denoted by . Moreover we relate the size measure of T to the geometry of the tangent space .
@article{AIHPC_2013__30_1_79_0, author = {Ambrosio, Luigi and Ghiraldin, Francesco}, title = {Flat chains of finite size in metric spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {79--100}, publisher = {Elsevier}, volume = {30}, number = {1}, year = {2013}, doi = {10.1016/j.anihpc.2012.06.002}, mrnumber = {3011292}, zbl = {1261.49013}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.06.002/} }
TY - JOUR AU - Ambrosio, Luigi AU - Ghiraldin, Francesco TI - Flat chains of finite size in metric spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 79 EP - 100 VL - 30 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.06.002/ DO - 10.1016/j.anihpc.2012.06.002 LA - en ID - AIHPC_2013__30_1_79_0 ER -
%0 Journal Article %A Ambrosio, Luigi %A Ghiraldin, Francesco %T Flat chains of finite size in metric spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 79-100 %V 30 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.06.002/ %R 10.1016/j.anihpc.2012.06.002 %G en %F AIHPC_2013__30_1_79_0
Ambrosio, Luigi; Ghiraldin, Francesco. Flat chains of finite size in metric spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 79-100. doi : 10.1016/j.anihpc.2012.06.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.06.002/
[1] Deformations and multiple-valued functions, Geometric Measure Theory and the Calculus of Variations, Arcata, CA, 1984, Proc. Sympos. Pure Math. vol. 18 (1986), 29-130 | MR | Zbl
,[2] Flat chains in Banach spaces, J. Geom. Anal. 18 (2008), 1-28 | MR | Zbl
,[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. (2000) | MR | Zbl
, , ,[4] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser (2005) | MR | Zbl
, , ,[5] Metric space valued functions of bounded variation, Ann. Sc. Norm. Super. 17 (1990), 439-478 | EuDML | Numdam | MR | Zbl
,[6] Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527-555 | MR | Zbl
, ,[7] Currents in metric spaces, Acta Math. 185 (2000), 1-80 | MR | Zbl
, ,[8] Flat currents modulo p in metric spaces and filling radius inequalities, Comment. Math. Helv. 86 (2011), 557-592 | MR | Zbl
, ,[9] Rectifiability of flat chains in Banach spaces with coefficients in , Math. Z. 268 (2011), 477-506 | MR | Zbl
, ,[10] Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. vol. 580, Springer-Verlag (1977) | MR | Zbl
, ,[11] Problema di Plateau generale e funzionali geodetici, Atti Semin. Mat. Fis. Univ. Modena 43 (1995), 285-292 | MR
,[12] Some fine properties of currents and applications to distributional Jacobians, Proc. Roy. Soc. Edinburgh 132 (2002), 815-842 | MR | Zbl
,[13] C. De Lellis, E. Spadaro, Q-valued functions revisited, preprint, 2008. | MR
[14] Size minimization and approximating problems, Calc. Var. Partial Differential Equations 17 (2003), 405-442 | MR | Zbl
, ,[15] Rectifiable and flat G-chains in a metric space, Amer. J. Math. 134 (2012), 1-69 | MR | Zbl
, ,[16] Geometric Measure Theory, Grundlehren Math. Wiss. vol. 153, Springer-Verlag (1969) | MR | Zbl
,[17] Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351-407 | MR | Zbl
,[18] Normal and integral current, Ann. of Math. 72 (1960), 458-520 | MR | Zbl
, ,[19] Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186 | MR | Zbl
,[20] F. Ghiraldin, Special functions of bounded higher variation and a functional of Mumford–Shah type in codimension higher than one, in preparation. | Numdam | MR
[21] Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), 113-123 | MR | Zbl
,[22] Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683-742 | MR | Zbl
,[23] Size-minimizing rectifiable currents, Invent. Math. 96 (1989), 333-348 | EuDML | MR | Zbl
,[24] Weak closure of singular abelian -bundles in 3 dimensions, Geom. Funct. Anal. 21 (2011), 1419-1442 | MR | Zbl
, ,[25] On some infinite sums of integer valued Diracʼs masses, C. R. Acad. Sci. Paris, Ser. I 334 (2002), 371-374 | MR | Zbl
,[26] Optimal Transport: Old and New, Grundlehren Math. Wiss. vol. 338, Springer-Verlag, Berlin (2009) | MR | Zbl
,[27] Flat convergence for integral currents in metric spaces, Calc. Var. Partial Differential Equations 28 (2007), 139-160 | MR | Zbl
,[28] Rectifiability of flat chains, Ann. of Math. 150 (1999), 165-184 | EuDML | MR | Zbl
,[29] The deformation theorem for flat chains, Acta Math. 183 (1999), 255-271 | MR | Zbl
,Cité par Sources :