In this paper we study the existence and qualitative properties of traveling waves associated with a nonlinear flux limited partial differential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of classical regularity, but also the existence of discontinuous entropy traveling wave solutions.
Mots clés : Flux limited, Relativistic heat equation, Singular traveling waves, Nonlinear reaction–diffusion, KPP, Traveling waves, Optimal mass transportation, Entropy solutions, Complex systems, Traffic flow, Biomathematics
@article{AIHPC_2013__30_1_141_0, author = {Campos, Juan and Guerrero, Pilar and S\'anchez, \'Oscar and Soler, Juan}, title = {On the analysis of traveling waves to a nonlinear flux limited reaction{\textendash}diffusion equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {141--155}, publisher = {Elsevier}, volume = {30}, number = {1}, year = {2013}, doi = {10.1016/j.anihpc.2012.07.001}, mrnumber = {3011295}, zbl = {1263.35059}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.001/} }
TY - JOUR AU - Campos, Juan AU - Guerrero, Pilar AU - Sánchez, Óscar AU - Soler, Juan TI - On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 141 EP - 155 VL - 30 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.001/ DO - 10.1016/j.anihpc.2012.07.001 LA - en ID - AIHPC_2013__30_1_141_0 ER -
%0 Journal Article %A Campos, Juan %A Guerrero, Pilar %A Sánchez, Óscar %A Soler, Juan %T On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 141-155 %V 30 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.001/ %R 10.1016/j.anihpc.2012.07.001 %G en %F AIHPC_2013__30_1_141_0
Campos, Juan; Guerrero, Pilar; Sánchez, Óscar; Soler, Juan. On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 141-155. doi : 10.1016/j.anihpc.2012.07.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.001/
[1] On a nonlinear flux-limited equation arising in the transport of morphogens, J. Differential Equations 252 no. 10 (2012), 5763-5813 | MR | Zbl
, , , ,[2] A Fisher–Kolmogorov equation with finite speed of propagation, J. Differential Equations 248 (2010), 2528-2561 | MR | Zbl
, , ,[3] Some regularity results on the relativistic heat equation, J. Differential Equations 245 (2008), 3639-3663 | MR | Zbl
, , ,[4] The Cauchy problem for a strongly degenerate quasilinear equation, J. Eur. Math. Soc. (JEMS) 7 (2005), 361-393 | EuDML | MR | Zbl
, , ,[5] Finite propagation speed for limited flux diffusion equations, Arch. Ration. Mech. Anal. 182 (2006), 269-297 | MR | Zbl
, , , ,[6] Accounting for finite-size effects in simulations of disperse particle-laden flows, Int. J. Multiph. Flow 34 (2008), 260-271
, , ,[7] Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial Differential Equations and Related Topics, Lecture Notes in Math. vol. 446, Springer, New York (1975), 5-49 | Zbl
, ,[8] Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978), 33-76 | MR | Zbl
, ,[9] Modelling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach, Birkhäuser, Springer, Boston (2008) | MR | Zbl
,[10] On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci. 22 no. Suppl. 4 (2012) | MR | Zbl
, ,[11] The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc. (JEMS) 7 (2005), 173-213 | EuDML | MR | Zbl
, , ,[12] Reaction–diffusion equations for population dynamics with forced speed, I – The case of the whole space, Discrete Contin. Dyn. Syst. 21 (2008), 41-67 | MR | Zbl
, ,[13] Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), 949-1032 | MR | Zbl
, ,[14] Generalized traveling waves for reaction–diffusion equations, Perspectives in Nonlinear Partial Differential Equations, in Honor of H. Brezis, Contemp. Math. vol. 446, Amer. Math. Soc., Providence, RI (2007) | Zbl
, ,[15] A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal. 187 (2008), 185-220 | MR | Zbl
, , , ,[16] Extended Monge–Kantorovich theory, Optimal Transportation and Applications: Lectures Given at the C.I.M.E. Summer School Held in Martina Franca, Italy, September 2–8, 2001, Lecture Notes in Math. vol. 1813, Springer-Verlag, Berlin (2003), 91-122 | Zbl
,[17] Qualitative properties of the solutions of a nonlinear flux-limited equation arising in the transport of morphogens, Math. Models Methods Appl. Sci. 21 no. Suppl. 1 (2011), 893-937 | MR | Zbl
, , , ,[18] Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal. 154 (2000), 53-91 | MR | Zbl
, , , ,[19] Asymptotic behaviour for the Vlasov–Poisson system in the stellar dynamics case, Arch. Ration. Mech. Anal. 171 (2004), 301-327 | MR | Zbl
, , ,[20] Mathematical Aspects of Reacting and Diffusing Systems, Lect. Notes Biomath. vol. 28, Springer-Verlag (1979) | MR | Zbl
,[21] The advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369 | JFM
,[22] Theory of Ordinary Differential Equations, Brigham Young University (2008)
,[23] Traveling fronts in nonlinear diffusion equations, J. Math. Biol. 2 (1975), 251-263 | MR | Zbl
, ,[24] Ordinary Differential Equations, Wiley, New York (1964) | MR | Zbl
,[25] Étude de lʼéquation de la diffusion avec croissance de la quantité de matiére et son application á un problḿe biologique, Bulletin Université de Etatá Moscou, Série Internationale A 1 (1937), 1-26, (ed.), Dynamics of Curved Fronts, Academic Press (1988), 105-130 | Zbl
, , ,[26] Flame fronts in a turbulent combustion model with fractal velocity fields, Comm. Pure Appl. Math. 51 (1998), 1337-1348 | MR | Zbl
, ,[27] Models of Biological Pattern Formation, Academic Press (1982)
,[28] Foundations of Radiation Hydrodynamics, Oxford University Press, Oxford (1984) | MR | Zbl
, ,[29] Mathematical Biology, Springer-Verlag (1996) | MR
,[30] Traveling wave solutions of a nerve conduction equation, Biophys. J. 13 (1973), 1313-1336 | MR
, ,[31] Tempered diffusion: A transport process with propagating front and inertial delay, Phys. Rev. A 46 (1992), 7371-7374
,[32] Signal dynamics in Sonic hedgehog tissue patterning, Development 133 (2006), 889-900
, ,[33] Existence and uniqueness of a sharp traveling wave in degenerate non-linear diffusion Fisher–KPP equations, J. Math. Biol. 33 (1994), 163-192 | MR | Zbl
, ,[34] Stability of waves of nonlinear parabolic systems, Adv. Math. 22 (1976), 312-355 | MR | Zbl
,[35] Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr. vol. 140, Amer. Math. Soc. (1994) | MR | Zbl
, , ,[36] The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B 237 (1952), 37-72 | MR
,Cité par Sources :