Ce papier considère un problème aux limites dans des domaines tridimensionnels réguliers et bornés, plus précisément, un système couplé de chemotaxie-Stokes qui généralise le prototype
This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-Stokes system generalizing the prototype
Keywords: Chemotaxis, Stokes, Nonlinear diffusion, Global existence, Boundedness
Mots clés : Chemotaxie, Stokes, Diffusion nonlinéaire, Existence globale, Estimation uniforme
@article{AIHPC_2013__30_1_157_0, author = {Tao, Youshan and Winkler, Michael}, title = {Locally bounded global solutions in a three-dimensional {chemotaxis-Stokes} system with nonlinear diffusion}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {157--178}, publisher = {Elsevier}, volume = {30}, number = {1}, year = {2013}, doi = {10.1016/j.anihpc.2012.07.002}, mrnumber = {3011296}, zbl = {1283.35154}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.002/} }
TY - JOUR AU - Tao, Youshan AU - Winkler, Michael TI - Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 157 EP - 178 VL - 30 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.002/ DO - 10.1016/j.anihpc.2012.07.002 LA - en ID - AIHPC_2013__30_1_157_0 ER -
%0 Journal Article %A Tao, Youshan %A Winkler, Michael %T Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 157-178 %V 30 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.002/ %R 10.1016/j.anihpc.2012.07.002 %G en %F AIHPC_2013__30_1_157_0
Tao, Youshan; Winkler, Michael. Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 157-178. doi : 10.1016/j.anihpc.2012.07.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.07.002/
[1] Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl. 86 no. 9 (2006), 155-175 | MR | Zbl
, ,[2] On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 no. 2 (1998), 321-342 | Zbl
, , ,[3] Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett. 93 (2004)
, , , , ,[4] Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A 28 (2010), 1437-1453 | MR | Zbl
, , ,[5] Global solutions to the coupled chemotaxis–fluid equations, Comm. Partial Differential Equations 35 (2010), 1635-1673 | MR | Zbl
, , ,[6] Partial Differential Equations, Holt, Rinehart & Winston, New York (1969) | MR
,[7] Abstract estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94 | MR | Zbl
, ,[8] A userʼs guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183-217 | MR | Zbl
, ,[9] Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 no. 1 (2005), 52-107 | MR | Zbl
, ,[10] Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type with small data, J. Differential Equations 252 no. 3 (2011), 2469-2491 | MR | Zbl
, ,[11] Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), 566-585 | MR | Zbl
,[12] Équations différentielles opérationnelles et problémes aux limites, Die Grundlehren der mathematischen Wissenschaften, Springer (1961) | MR | Zbl
,[13] Résolution de problèmes elliptiques quasilinéaires, Arch. Ration. Mech. Anal. 74 no. 4 (1980), 335-353 | MR | Zbl
,[14] A coupled chemotaxis–fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 643-652 | Numdam | MR | Zbl
, ,[15] Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci. 20 (2010), 987-1004 | MR | Zbl
,[16] A quasi-linear system of chemotaxis, Abstr. Appl. Anal. 2006 (2006), 1-21 | MR | Zbl
, ,[17] Compact sets in the space , Ann. Mat. Pura Appl. 146 no. 4 (1987), 65-96 | MR | Zbl
,[18] The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel (2001) | MR | Zbl
,[19] Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci. 19 (2009), 257-281 | MR | Zbl
, , , ,[20] A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal. 43 (2011), 685-704 | MR | Zbl
, ,[21] Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692-715 | MR | Zbl
, ,[22] Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A 32 no. 5 (2012) | MR | Zbl
, ,[23] Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282 | Zbl
, , , , , ,[24] The Porous Medium Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford (2007) | MR
,[25] A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci. 25 (2002), 911-925 | MR | Zbl
,[26] Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci. 33 (2010), 12-24 | MR | Zbl
,[27] Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), 319-352 | MR | Zbl
,Cité par Sources :