On the three-dimensional finite Larmor radius approximation: The case of electrons in a fixed background of ions
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 1127-1157.

This paper is concerned with the analysis of a mathematical model arising in plasma physics, more specifically in fusion research. It directly follows, Han-Kwan (2010) [18], where the three-dimensional analysis of a Vlasov–Poisson equation with finite Larmor radius scaling was led, corresponding to the case of ions with massless electrons whose density follows a linearized Maxwell–Boltzmann law. We now consider the case of electrons in a background of fixed ions, which was only sketched in Han-Kwan (2010) [18]. Unfortunately, there is evidence that the formal limit is false in general. Nevertheless, we formally derive from the Vlasov–Poisson equation a fluid system for particular monokinetic data. We prove the local in time existence of analytic solutions and rigorously study the limit (when the inverse of the intensity of the magnetic field and the Debye length vanish) to a new anisotropic fluid system. This is achieved thanks to Cauchy–Kovalevskaya type techniques, as introduced by Caflisch (1990) [7] and Grenier (1996) [14]. We finally show that this approach fails in Sobolev regularity, due to multi-fluid instabilities.

DOI : 10.1016/j.anihpc.2012.12.012
Mots clés : Gyrokinetic limit, Finite Larmor radius approximation, Anisotropic quasineutral limit, Anisotropic hydrodynamic systems, Analytic regularity, Cauchy–Kovalevskaya theorem, Ill-posedness in Sobolev spaces
@article{AIHPC_2013__30_6_1127_0,
     author = {Han-Kwan, Daniel},
     title = {On the three-dimensional finite {Larmor} radius approximation: {The} case of electrons in a fixed background of ions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1127--1157},
     publisher = {Elsevier},
     volume = {30},
     number = {6},
     year = {2013},
     doi = {10.1016/j.anihpc.2012.12.012},
     mrnumber = {3132419},
     zbl = {1338.82055},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.12.012/}
}
TY  - JOUR
AU  - Han-Kwan, Daniel
TI  - On the three-dimensional finite Larmor radius approximation: The case of electrons in a fixed background of ions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2013
SP  - 1127
EP  - 1157
VL  - 30
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.12.012/
DO  - 10.1016/j.anihpc.2012.12.012
LA  - en
ID  - AIHPC_2013__30_6_1127_0
ER  - 
%0 Journal Article
%A Han-Kwan, Daniel
%T On the three-dimensional finite Larmor radius approximation: The case of electrons in a fixed background of ions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2013
%P 1127-1157
%V 30
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.12.012/
%R 10.1016/j.anihpc.2012.12.012
%G en
%F AIHPC_2013__30_6_1127_0
Han-Kwan, Daniel. On the three-dimensional finite Larmor radius approximation: The case of electrons in a fixed background of ions. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 1127-1157. doi : 10.1016/j.anihpc.2012.12.012. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.12.012/

[1] A.A. Arsenev, Existence in the large of a weak solution of Vlasovʼs system of equations, Z. Vychisl. Mat. Mat. Fiz. 15 (1975), 136-147 | MR

[2] N. Besse, F. Berthelin, Y. Brenier, P. Bertrand, The multi-water-bag equations for collisionless kinetic modeling, Kinet. Relat. Models 2 no. 1 (2009), 39-80 | MR | Zbl

[3] M. Bostan, The Vlasov–Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal. 61 no. 2 (2009), 91-123 | MR | Zbl

[4] Y. Brenier, Some conservation laws given by kinetic models, J. EDP (1995), 1-13 | Numdam | Zbl

[5] Y. Brenier, A homogenized model for vortex sheets, Arch. Ration. Mech. Anal. 138 (1997), 319-353 | MR | Zbl

[6] Y. Brenier, Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 25 (2000), 737-754 | MR | Zbl

[7] R. Caflisch, A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities, Bull. Amer. Math. Soc. (N.S.) 23 no. 2 (1990), 495-500 | MR | Zbl

[8] S. Cordier, E. Grenier, Y. Guo, Two-stream instabilities in plasmas, Methods Appl. Anal. 7 no. 2 (2000), 391-405 | MR | Zbl

[9] E. Frénod, A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math.: Adv. Appl. 4 no. 2 (2010), 135-166 | MR | Zbl

[10] E. Frénod, E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal. 32 no. 6 (2001), 1227-1247 | MR | Zbl

[11] P. Ghendrih, M. Hauray, A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions, Kinet. Relat. Models 2 no. 4 (2009), 707-725 | MR | Zbl

[12] F. Golse, L. Saint-Raymond, The Vlasov–Poisson system with strong magnetic field, J. Math. Pures. Appl. 78 (1999), 791-817 | MR | Zbl

[13] V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fusion 49 (2007), 173-182

[14] E. Grenier, Oscillations in quasineutral plasmas, Comm. Partial Differential Equations 21 no. 3–4 (1996), 363-394 | MR | Zbl

[15] E. Grenier, Limite quasineutre en dimension 1, Journées “Équations aux Dérivées Partielles”, Saint-Jean-de-Monts, 1999, Univ. Nantes, Nantes (1999) | EuDML | MR

[16] Y. Guo, W.A. Strauss, Nonlinear instability of double-humped equilibria, Ann. I. H. P., Sect. C 12 no. 3 (1995), 339-352 | EuDML | Numdam | MR | Zbl

[17] D. Han-Kwan, On the confinement of a tokamak plasma, SIAM J. Math. Anal. 42 no. 6 (2010), 2337-2367 | MR | Zbl

[18] D. Han-Kwan, The three-dimensional finite Larmor radius approximation, Asymptot. Anal. 66 no. 1 (2010), 9-33 | MR | Zbl

[19] D. Han-Kwan, Contribution à lʼétude mathématique des plasmas fortement magnétisés, PhD thesis, 2011.

[20] D. Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma, ESAIM Math. Model. Numer. Anal. 46 no. 4 (2012), 929-947 | EuDML | Numdam | MR | Zbl

[21] M. Hauray, A. Nouri, Well-posedness of a diffusive gyro-kinetic model, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 no. 4 (2011), 529-550 | Numdam | MR | Zbl

[22] T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Ration. Mech. Anal. 25 (1967), 188-200 | MR | Zbl

[23] Z. Lin, S. Ethier, T.S. Hahm, W.M. Tang, Size scaling of turbulent transport in magnetically confined plasmas, Phys. Rev. Lett. 88 no. 19 (May 2002), 195004-1-195004-4

[24] Andrew J. Majda, Andrea L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts Appl. Math. vol. 27, Cambridge University Press, Cambridge (2002) | MR | Zbl

[25] C. Mouhot, C. Villani, On Landau damping, Acta Math. 207 no. 1 (2011), 29-201 | MR | Zbl

[26] O. Penrose, Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids 3 (1960), 258-265 | Zbl

[27] J. Simon, Compact sets in L p (0,T;B), Ann. Mat. Pura. Appl. 146 (1987), 65-96 | MR | Zbl

[28] P.L. Sulem, Introduction to the guiding center theory. Topics in kinetic theory, Fields Inst. Commun., Amer. Math. Soc. 46 (2005), 109-149 | MR | Zbl

[29] J. Wesson, Tokamaks, Clarendon Press, Oxford (2004) | Zbl

[30] V.I. Yudovič, Non-stationary flows of an ideal incompressible fluid, Z. Vychisl. Mat. Mat. Fiz. 3 (1963), 1032-1066 | MR

Cité par Sources :