In this work we deal with the existence and qualitative properties of the solutions to a supercritical problem involving the operator and the Hardy–Leray potential. Assuming , we study the regularizing effect due to the addition of a first order nonlinear term, which provides the existence of solutions with a breaking of resonance. Once we have proved the existence of a solution, we study the qualitative properties of the solutions such as regularity, monotonicity and symmetry.
Mots clés : Quasilinear elliptic equations, Hardy potential, Supercritical problems, Existence and nonexistence, Regularity, Symmetry of solutions
@article{AIHPC_2014__31_1_1_0, author = {Merch\'an, Susana and Montoro, Luigi and Peral, Ireneo and Sciunzi, Berardino}, title = {Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the {Hardy{\textendash}Leray} potential}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--22}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {2014}, doi = {10.1016/j.anihpc.2013.01.003}, mrnumber = {3165277}, zbl = {1291.35082}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.01.003/} }
TY - JOUR AU - Merchán, Susana AU - Montoro, Luigi AU - Peral, Ireneo AU - Sciunzi, Berardino TI - Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 1 EP - 22 VL - 31 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.01.003/ DO - 10.1016/j.anihpc.2013.01.003 LA - en ID - AIHPC_2014__31_1_1_0 ER -
%0 Journal Article %A Merchán, Susana %A Montoro, Luigi %A Peral, Ireneo %A Sciunzi, Berardino %T Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 1-22 %V 31 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.01.003/ %R 10.1016/j.anihpc.2013.01.003 %G en %F AIHPC_2014__31_1_1_0
Merchán, Susana; Montoro, Luigi; Peral, Ireneo; Sciunzi, Berardino. Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2013.01.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.01.003/
[1] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22 no. 2 (1995), 241-273 | EuDML | Numdam | MR | Zbl
, , , , , ,[2] On the method of moving planes and the sliding method, Bull. Soc. Brasil. Mat. (N.S. 22 no. 1 (1991), 1-37 | MR | Zbl
, ,[3] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 no. 19 (1992), 581-597 | MR | Zbl
, ,[4] Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa 11 no. 2 (1984), 213-235 | EuDML | Numdam | MR | Zbl
, , ,[5] Approximated solutions of equations with data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. 170 no. 4 (1996), 207-240 | MR | Zbl
,[6] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28 no. 4 (1999), 741-808 | EuDML | Numdam | MR | Zbl
, , , ,[7] Monotonicity and symmetry of solutions of p-Laplace equations, , via the moving plane method, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26 no. 4 (1998), 689-707 | EuDML | Numdam | MR | Zbl
, ,[8] Monotonicity and symmetry results for p-Laplace equations and applications, Adv. Differential Equations 5 no. 7–9 (2000), 1179-1200 | MR | Zbl
, ,[9] Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR | Zbl
, ,[10] Nonlinear elliptic problems with a singular weight on the boundary, Calc. Var. Partial Differential Equations 41 no. 3–4 (2011), 567-586 | MR | Zbl
, ,[11] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 no. 8 (1983), 827-850 | MR | Zbl
,[12] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR | Zbl
, , ,[13] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford (1993) | MR | Zbl
, , ,[14] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 no. 11 (1988), 1203-1219 | MR | Zbl
,[15] Remarks on the solvability of an elliptic equation with a supercritical term involving the Hardy–Leray potential, J. Math. Anal. Appl. 394 (2012), 347-359 | MR | Zbl
, ,[16] S. Merchán, L. Montoro, Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy–Leray potential, Ann. Mat. Pura Appl., http://dx.doi.org/10.1007/s10231-012-0293-7. | MR
[17] Asymptotic symmetry for a class of quasi-linear parabolic problems, Adv. Nonlinear Stud. 10 no. 4 (2010), 789-818 | MR | Zbl
, , ,[18] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 no. 1 (1984), 126-150 | MR | Zbl
,[19] The Maximum Principle, Birkhäuser, Boston (2007) | MR | Zbl
, ,[20] Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302 | MR | Zbl
,[21] A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 no. 4 (1971), 304-318 | MR | Zbl
,Cité par Sources :