We prove sharp embedding inequalities for certain reduced Sobolev spaces that arise naturally in the context of Dirichlet problems with data. We also find the optimal target spaces for such embeddings, which in dimension 2 could be considered as limiting cases of the Hansson–Brezis–Wainger spaces, for the optimal embeddings of borderline Sobolev spaces .
@article{AIHPC_2014__31_2_217_0, author = {Fontana, Luigi and Morpurgo, Carlo}, title = {Optimal limiting embeddings for {\ensuremath{\Delta}-reduced} {Sobolev} spaces in $ {L}^{1}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {217--230}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.02.007}, mrnumber = {3181666}, zbl = {1316.46035}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.02.007/} }
TY - JOUR AU - Fontana, Luigi AU - Morpurgo, Carlo TI - Optimal limiting embeddings for Δ-reduced Sobolev spaces in $ {L}^{1}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 217 EP - 230 VL - 31 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.02.007/ DO - 10.1016/j.anihpc.2013.02.007 LA - en ID - AIHPC_2014__31_2_217_0 ER -
%0 Journal Article %A Fontana, Luigi %A Morpurgo, Carlo %T Optimal limiting embeddings for Δ-reduced Sobolev spaces in $ {L}^{1}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 217-230 %V 31 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.02.007/ %R 10.1016/j.anihpc.2013.02.007 %G en %F AIHPC_2014__31_2_217_0
Fontana, Luigi; Morpurgo, Carlo. Optimal limiting embeddings for Δ-reduced Sobolev spaces in $ {L}^{1}$. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, pp. 217-230. doi : 10.1016/j.anihpc.2013.02.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.02.007/
[1] A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398 | MR | Zbl
,[2] Optimal summability of solutions to nonlinear elliptic problems, Nonlinear Anal. 67 (2007), 1775-1790 | MR | Zbl
, ,[3] Regularity properties of solutions of elliptic equations in in limit cases, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), 237-250 | EuDML | MR | Zbl
, ,[4] A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli 44 (1977), 105-112 | MR | Zbl
,[5] Estimates for the gradient of solutions of nonlinear elliptic equations with data, Ann. Mat. Pura Appl. 178 (2000), 129-142 | MR | Zbl
, , ,[6] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253 | MR | Zbl
, ,[7] Interpolation of Operators, Pure Appl. Math. vol. 129, Academic Press, Inc., Boston, MA (1988) | MR | Zbl
, ,[8] Semi-linear second-order elliptic equations in , J. Math. Soc. Japan 25 (1973), 565-590 | MR | Zbl
, ,[9] A note on limiting cases of Sobolev embeddings, Comm. Partial Differential Equations 5 (1980), 773-789 | MR | Zbl
, ,[10] Higher-order Sobolev and Poincaré inequalities in Orlicz spaces, Forum Math. 18 (2006), 745-767 | MR | Zbl
,[11] Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl. 4 (1998), 433-446 | EuDML | MR | Zbl
, ,[12] Best constants in a borderline case of second-order Moser type inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 73-93 | Numdam | MR | Zbl
, , ,[13] Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 | MR | Zbl
, , ,[14] Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 | EuDML | MR | Zbl
,[15] M-ideal properties in Marcinkiewicz spaces, Comment. Math. Prace Mat. (2004), 123-144 | MR | Zbl
, ,[16] Interpolation of Linear Operators, Transl. Math. Monogr. vol. 54, American Mathematical Society, Providence, RI (1982) | MR | Zbl
, , ,[17] A non-equality for differential operators in the norm, Arch. Ration. Mech. Anal. 11 (1962), 40-49 | MR | Zbl
,[18] On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), 495-511 | MR | Zbl
, ,[19] Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa 3 (1976), 697-718 | EuDML | Numdam | MR | Zbl
,Cited by Sources: