On donne les détails de la preuve de lʼéquation (29) dans Caponio et al. (2010) [3].
We give the details of the proof of equality (29) in Caponio et al. (2010) [3].
Mots clés : Morse theory, Critical groups, Finsler metrics
@article{AIHPC_2013__30_5_961_0, author = {Caponio, Erasmo and Javaloyes, Miguel \'Angel and Masiello, Antonio}, title = {Addendum to {{\textquotedblleft}Morse} theory of causal geodesics in a stationary spacetime via {Morse} theory of geodesics of a {Finsler} metric{\textquotedblright} {[Ann.} {I.} {H.} {Poincar\'e} {\textendash} {AN} 27 (3) (2010) 857{\textendash}876]}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {961--968}, publisher = {Elsevier}, volume = {30}, number = {5}, year = {2013}, doi = {10.1016/j.anihpc.2013.03.005}, zbl = {1286.58007}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.005/} }
TY - JOUR AU - Caponio, Erasmo AU - Javaloyes, Miguel Ángel AU - Masiello, Antonio TI - Addendum to “Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric” [Ann. I. H. Poincaré – AN 27 (3) (2010) 857–876] JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 961 EP - 968 VL - 30 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.005/ DO - 10.1016/j.anihpc.2013.03.005 LA - en ID - AIHPC_2013__30_5_961_0 ER -
%0 Journal Article %A Caponio, Erasmo %A Javaloyes, Miguel Ángel %A Masiello, Antonio %T Addendum to “Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric” [Ann. I. H. Poincaré – AN 27 (3) (2010) 857–876] %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 961-968 %V 30 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.005/ %R 10.1016/j.anihpc.2013.03.005 %G en %F AIHPC_2013__30_5_961_0
Caponio, Erasmo; Javaloyes, Miguel Ángel; Masiello, Antonio. Addendum to “Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric” [Ann. I. H. Poincaré – AN 27 (3) (2010) 857–876]. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 5, pp. 961-968. doi : 10.1016/j.anihpc.2013.03.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.005/
[1] A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009), 597-623 | Zbl
, ,[2] On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann. 351 (2011), 365-392 | Zbl
, , ,[3] Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 857-876 | Numdam | Zbl
, , ,[4] A variant mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241-1255 | Zbl
,[5] Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, MA (1993)
,[6] versus isolated critical points, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 441-446 | Zbl
,[7] The Morse index theorem for general end conditions, Houston J. Math. 27 (2001), 807-821 | Zbl
,[8] Riemannian Geometry, Birkhäuser, Boston, MA (1992)
,[9] Differential and Riemannian Manifolds, Grad. Texts in Math., Springer-Verlag, New York (1995) | Zbl
,[10] Splitting theorem, Poincaré–Hopf theorem and jumping nonlinear problems, J. Funct. Anal. 221 (2005), 439-455 | Zbl
, , ,[11] Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., Springer-Verlag, New York (1989) | Zbl
, ,[12] Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16 | Zbl
,[13] Morse theory in Hilbert space, Rocky Mountain J. Math. 3 (1973), 251-274 | Zbl
,Cité par Sources :