In this paper, we prove that there exist at least geometrically distinct brake orbits on every compact convex symmetric hypersurface Σ in for satisfying the reversible condition with . As a consequence, we show that there exist at least geometrically distinct brake orbits in every bounded convex symmetric domain in with which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for . As an application, for , we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.
Mots clés : Brake orbit, Maslov-type index, Seifert conjecture, Convex symmetric
@article{AIHPC_2014__31_3_531_0, author = {Zhang, Duanzhi and Liu, Chungen}, title = {Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {531--554}, publisher = {Elsevier}, volume = {31}, number = {3}, year = {2014}, doi = {10.1016/j.anihpc.2013.03.010}, zbl = {1300.52006}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.010/} }
TY - JOUR AU - Zhang, Duanzhi AU - Liu, Chungen TI - Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 531 EP - 554 VL - 31 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.010/ DO - 10.1016/j.anihpc.2013.03.010 LA - en ID - AIHPC_2014__31_3_531_0 ER -
%0 Journal Article %A Zhang, Duanzhi %A Liu, Chungen %T Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 531-554 %V 31 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.010/ %R 10.1016/j.anihpc.2013.03.010 %G en %F AIHPC_2014__31_3_531_0
Zhang, Duanzhi; Liu, Chungen. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 531-554. doi : 10.1016/j.anihpc.2013.03.010. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.03.010/
[1] A note on the existence of multiple brake orbits, Nonlinear Anal. 21 (1993), 643 -649 | MR | Zbl
, , ,[2] Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 401 -412 | EuDML | Numdam | MR | Zbl
,[3] A new proof of the existence of a brake orbit, Advanced Topics in the Theory of Dynamical Systems, Notes Rep. Math. Sci. Eng. vol. 6 (1989), 37 -49 | Zbl
, ,[4] Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1978), 72 -77 | MR | Zbl
,[5] Librations with many degrees of freedom, J. Appl. Math. Mech. 42 (1978), 245 -250 | MR
, ,[6] On the Maslov-type index, Comm. Pure Appl. Math. 47 (1994), 121 -186 | MR | Zbl
, , ,[7] Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin (1990) | MR | Zbl
,[8] Existence of periodic solutions of conservative systems, Seminar on Minimal Submanifolds, Princeton University Press (1983), 65 -98 | MR
, ,[9] Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1 -12 | MR | Zbl
,[10] Periodic solution of classical Hamiltonian systems, Tokyo J. Math. 6 (1983), 473 -486 | MR | Zbl
,[11] Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud. 7 no. 1 (2007), 131 -161 | MR | Zbl
,[12] Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math. 232 no. 1 (2007), 233 -255 | MR | Zbl
,[13] Multiplicity of closed characteristics on symmetric convex hypersurfaces in , Math. Ann. 323 no. 2 (2002), 201 -215 | MR | Zbl
, , ,[14] Iteration theory of L-index and multiplicity of brake orbits, arXiv:0908.0021v1 [math.SG] | MR | Zbl
, ,[15] Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999), 113 -149 | MR | Zbl
,[16] Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel (2002) | MR | Zbl
,[17] Multiple brake orbits in bounded convex symmetric domains, Adv. Math. 203 (2006), 568 -635 | MR | Zbl
, , ,[18] Closed characteristics on compact convex hypersurfaces in , Ann. of Math. 155 (2002), 317 -368 | MR | Zbl
, ,[19] On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. 11 (1987), 599 -611 | MR
,[20] Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), 197 -216 | EuDML | MR | Zbl
,[21] An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann. 283 (1989), 241 -255 | EuDML | MR | Zbl
,[22] Brake type closed characteristics on reversible compact convex hypersurfaces in , Nonlinear Anal. 74 (2011), 3149 -3158 | MR | Zbl
,[23] Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. Syst. (2013), arXiv:1110.6915v1 [math.SG] | MR
,Cité par Sources :