Well-posedness for Hall-magnetohydrodynamics
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 555-565.

We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.

DOI : 10.1016/j.anihpc.2013.04.006
Classification : 35L60, 35K55, 35Q80
Mots clés : Hall-MHD, Smooth solutions, Well-posedness, Liouville theorem
@article{AIHPC_2014__31_3_555_0,
     author = {Chae, Dongho and Degond, Pierre and Liu, Jian-Guo},
     title = {Well-posedness for {Hall-magnetohydrodynamics}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {555--565},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.04.006},
     mrnumber = {3208454},
     zbl = {1297.35064},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.04.006/}
}
TY  - JOUR
AU  - Chae, Dongho
AU  - Degond, Pierre
AU  - Liu, Jian-Guo
TI  - Well-posedness for Hall-magnetohydrodynamics
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 555
EP  - 565
VL  - 31
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.04.006/
DO  - 10.1016/j.anihpc.2013.04.006
LA  - en
ID  - AIHPC_2014__31_3_555_0
ER  - 
%0 Journal Article
%A Chae, Dongho
%A Degond, Pierre
%A Liu, Jian-Guo
%T Well-posedness for Hall-magnetohydrodynamics
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 555-565
%V 31
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.04.006/
%R 10.1016/j.anihpc.2013.04.006
%G en
%F AIHPC_2014__31_3_555_0
Chae, Dongho; Degond, Pierre; Liu, Jian-Guo. Well-posedness for Hall-magnetohydrodynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 555-565. doi : 10.1016/j.anihpc.2013.04.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.04.006/

[1] M. Acheritogaray, P. Degond, A. Frouvelle, J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models 4 (2011), 901 -918 | MR | Zbl

[2] S.A. Balbus, C. Terquem, Linear analysis of the Hall effect in protostellar disks, Astrophys. J. 552 (2001), 235 -247

[3] L.M.B.C. Campos, On hydromagnetic waves in atmospheres with application to the sun, Theor. Comput. Fluid Dyn. 10 (1998), 37 -70 | Zbl

[4] F. Charles, B. Després, B. Perthame, R. Sentis, Nonlinear stability of a Vlasov equation for magnetic plasmas, Kinet. Relat. Models 6 (2013), 269 -290 | MR | Zbl

[5] J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford (1998) | MR

[6] G. Duvaut, J.L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241 -279 | MR | Zbl

[7] T.G. Forbes, Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn. 62 (1991), 15 -36

[8] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II, Springer (1994) | MR | Zbl

[9] H. Homann, R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D 208 (2005), 59 -72 | MR | Zbl

[10] M.J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A 252 (1960), 397 -430 | MR | Zbl

[11] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press (2001) | MR

[12] P.D. Mininni, D.O. Gòmez, S.M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J. 587 (2003), 472 -481

[13] J.M. Polygiannakis, X. Moussas, A review of magneto-vorticity induction in Hall-MHD plasmas, Plasma Phys. Control. Fusion 43 (2001), 195 -221

[14] D.A. Shalybkov, V.A. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys. (1997), 685 -690

[15] M.E. Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials, American Mathematical Society (2000) | MR | Zbl

[16] H. Triebel, Theory of Function Spaces I, Birkhäuser Basel (1983) | MR

[17] M. Wardle, Star formation and the Hall effect, Astrophys. Space Sci. 292 (2004), 317 -323

Cité par Sources :