We study various boundary and inner regularity questions for -(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for -harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples.Along the way, we present a removability result for bounded -harmonic functions and give some new characterizations of spaces. We also show that -superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.
Mots clés : Comparison principle, Kellogg property, lsc-regularized, Nonlinear potential theory, Nonstandard growth equation, Obstacle problem, $ p(\cdot )$-harmonic, Quasicontinuous, Regular boundary point, Removable singularity, Semiregular point, Sobolev space, Strongly irregular point, $ p(\cdot )$-superharmonic, $ p(\cdot )$-supersolution, Trichotomy, Variable exponent
@article{AIHPC_2014__31_6_1131_0, author = {Adamowicz, Tomasz and Bj\"orn, Anders and Bj\"orn, Jana}, title = {Regularity of $ p(\cdot )$-superharmonic functions, the {Kellogg} property and semiregular boundary points}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1131--1153}, publisher = {Elsevier}, volume = {31}, number = {6}, year = {2014}, doi = {10.1016/j.anihpc.2013.07.012}, mrnumber = {3280063}, zbl = {1304.35296}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.012/} }
TY - JOUR AU - Adamowicz, Tomasz AU - Björn, Anders AU - Björn, Jana TI - Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 1131 EP - 1153 VL - 31 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.012/ DO - 10.1016/j.anihpc.2013.07.012 LA - en ID - AIHPC_2014__31_6_1131_0 ER -
%0 Journal Article %A Adamowicz, Tomasz %A Björn, Anders %A Björn, Jana %T Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 1131-1153 %V 31 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.012/ %R 10.1016/j.anihpc.2013.07.012 %G en %F AIHPC_2014__31_6_1131_0
Adamowicz, Tomasz; Björn, Anders; Björn, Jana. Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1131-1153. doi : 10.1016/j.anihpc.2013.07.012. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.07.012/
[1] Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), 213 -259 | MR | Zbl
, ,[2] Gradient estimates for the -Laplacean system, J. Reine Angew. Math. 584 (2005), 117 -148 | MR | Zbl
, ,[3] Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. 2010 (2010), 1940 -1965 | MR | Zbl
, ,[4] Harnack's inequality and the strong -Laplacian, J. Differ. Equ. 250 (2011), 1631 -1649 | MR | Zbl
, ,[5] Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition, Izv. Ross. Akad. Nauk Ser. Mat. 68 no. 6 (2004), 3 -60 , Izv. Math. 68 (2004), 1063 -1117 | MR | Zbl
, ,[6] Classical Potential Theory, Springer, London (2001) | MR
, ,[7] A regularity classification of boundary points for p-harmonic functions and quasiminimizers, J. Math. Anal. Appl. 338 (2008), 39 -47 | MR | Zbl
,[8] Boundary regularity for p-harmonic functions and solutions of the obstacle problem, J. Math. Soc. Jpn. 58 (2006), 1211 -1232 | MR | Zbl
, ,[9] Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math. vol. 17 , European Math. Soc., Zürich (2011) | MR | Zbl
, ,[10] A. Björn, J. Björn, U. Gianazza, M. Parviainen, Boundary regularity for degenerate and singular parabolic equations, in preparation.
[11] The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173 -203 | MR | Zbl
, , ,[12] Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 no. 4 (2006), 1383 -1406 | MR | Zbl
, , ,[13] Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math. vol. 2017 , Springer, Berlin, Heidelberg (2011) | MR | Zbl
, , , ,[14] Global regularity for variable exponent elliptic equations in divergence form, J. Differ. Equ. 235 (2007), 397 -417 | Zbl
,[15] A strong maximum principle for -Laplace equations, Chin. Ann. Math., Ser. A 24 (2003), 495 -500 , Chin. J. Contemp. Math. 24 (2003), 277 -282
, , ,[16] An obstacle problem and superharmonic functions with nonstandard growth, Nonlinear Anal. 67 (2007), 3424 -3440 | MR | Zbl
, , , , ,[17] The strong minimum principle for quasisuperminimizers of non-standard growth, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 731 -742 | Numdam | MR | Zbl
, , , ,[18] Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), 4551 -4574 | MR | Zbl
, , , ,[19] Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. 2007 (2007) | EuDML | MR | Zbl
, , ,[20] Fine topology of variable exponent energy superminimizers, Ann. Acad. Sci. Fenn. Math. 33 (2008), 491 -510 | EuDML | MR | Zbl
, ,[21] Lectures on Analysis on Metric Spaces, Springer, New York (2001) | MR | Zbl
,[22] Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, NY (2006) | MR | Zbl
, , ,[23] Regularity for the porous medium equation with variable exponent: the singular case, J. Differ. Equ. 244 (2008), 2578 -2601 | MR | Zbl
,[24] A remark on the uniqueness of quasi continuous functions, Ann. Acad. Sci. Fenn. Math. 23 no. 1 (1998), 261 -262 | EuDML | MR | Zbl
,[25] The fundamental convergence theorem for -superharmonic functions, Potential Anal. 35 (2011), 329 -351 | MR | Zbl
, , ,[26] Sur des cas d'impossibilité du problème de Dirichlet ordinaire, in Vie de la société, Bull. Soc. Math. Fr. 41 (1913), 1 -62
,[27] On the boundary behaviour of the Perron generalized solution, Math. Ann. 257 (1981), 355 -366 | EuDML | MR | Zbl
, ,[28] Singular solutions of elliptic equations with nonstandard growth, Math. Nachr. 282 (2009), 1770 -1787 | MR | Zbl
,[29] Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math. vol. 1748 , Springer, Berlin (2000) | MR | Zbl
,[30] Sur le principe de Dirichlet, Acta Math. 34 (1911), 293 -316 | JFM | MR
,Cité par Sources :