In this paper we consider the equation
Dans ce papier nous considérons l'équation
Keywords: Variational methods, Solutions with infinitely many bumps, Schrödinger equation
@article{AIHPC_2015__32_1_23_0, author = {Cerami, Giovanna and Passaseo, Donato and Solimini, Sergio}, title = {Nonlinear scalar field equations: {Existence} of a positive solution with infinitely many bumps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {23--40}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {2015}, doi = {10.1016/j.anihpc.2013.08.008}, mrnumber = {3303940}, zbl = {1311.35081}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.08.008/} }
TY - JOUR AU - Cerami, Giovanna AU - Passaseo, Donato AU - Solimini, Sergio TI - Nonlinear scalar field equations: Existence of a positive solution with infinitely many bumps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 23 EP - 40 VL - 32 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.08.008/ DO - 10.1016/j.anihpc.2013.08.008 LA - en ID - AIHPC_2015__32_1_23_0 ER -
%0 Journal Article %A Cerami, Giovanna %A Passaseo, Donato %A Solimini, Sergio %T Nonlinear scalar field equations: Existence of a positive solution with infinitely many bumps %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 23-40 %V 32 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.08.008/ %R 10.1016/j.anihpc.2013.08.008 %G en %F AIHPC_2015__32_1_23_0
Cerami, Giovanna; Passaseo, Donato; Solimini, Sergio. Nonlinear scalar field equations: Existence of a positive solution with infinitely many bumps. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, pp. 23-40. doi : 10.1016/j.anihpc.2013.08.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.08.008/
[1] On a min–max procedure for the existence of a positive solution for certain scalar field equations in , Rev. Mat. Iberoam. 6 (1990), 1 -15 | EuDML | MR | Zbl
, ,[2] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997), 365 -413 | EuDML | Numdam | MR | Zbl
, ,[3] Analyse fonctionelle. Theorie et applications, Collect. Math. Appl. Maîtrise , Masson, Paris (1983) | MR
,[4] Some nonlinear elliptic problems in unbounded domains, Milan J. Math. 74 (2006), 47 -77 | MR | Zbl
,[5] Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differ. Equ. 23 (2005), 139 -168 | MR | Zbl
, , ,[6] Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients, Commun. Pure Appl. Math. 66 (2013), 372 -413 | MR | Zbl
, , ,[7] The concentration compactness principle in the calculus of variations, Parts I and II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 109 -145 | EuDML | Numdam | MR | Zbl
,[8] Infinitely many positive solutions for the nonlinear Schrödinger equations in , Calc. Var. Partial Differ. Equ. 37 (2010), 423 -439 | MR | Zbl
, ,Cited by Sources: