Let Ω be a bounded domain in with smooth boundary. In this paper we are concerned with the existence of critical points for the supercritical Trudinger–Moser trace functional
@article{AIHPC_2015__32_1_59_0, author = {Deng, Shengbing and Musso, Monica}, title = {Critical points of the {Trudinger{\textendash}Moser} trace functional with high energy levels}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {59--95}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {2015}, doi = {10.1016/j.anihpc.2013.10.002}, mrnumber = {3303942}, zbl = {1336.35134}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.10.002/} }
TY - JOUR AU - Deng, Shengbing AU - Musso, Monica TI - Critical points of the Trudinger–Moser trace functional with high energy levels JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 59 EP - 95 VL - 32 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.10.002/ DO - 10.1016/j.anihpc.2013.10.002 LA - en ID - AIHPC_2015__32_1_59_0 ER -
%0 Journal Article %A Deng, Shengbing %A Musso, Monica %T Critical points of the Trudinger–Moser trace functional with high energy levels %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 59-95 %V 32 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.10.002/ %R 10.1016/j.anihpc.2013.10.002 %G en %F AIHPC_2015__32_1_59_0
Deng, Shengbing; Musso, Monica. Critical points of the Trudinger–Moser trace functional with high energy levels. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, pp. 59-95. doi : 10.1016/j.anihpc.2013.10.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.10.002/
[1] Traces of potentials. II, Indiana Univ. Math. J. 22 (1973), 907 -918 | MR | Zbl
,[2] Critical exponent problem in with Neumann boundary condition, Commun. Partial Differ. Equ. 15 no. 4 (1990), 461 -501 | MR | Zbl
, ,[3] On compactness in the Trudinger–Moser inequality, Ann. Sc. Norm. Super. Pisa (2013), http://dx.doi.org/10.2422/2036-2145.201111_003, http://arxiv.org/abs/1110.3647 | MR | Zbl
, ,[4] On a version of Trudinger–Moser inequality with Möbius shift invariance, Calc. Var. Partial Differ. Equ. 39 (2010), 203 -212 | MR | Zbl
, ,[5] On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113 -127 | MR | Zbl
, ,[6] Problèmes de Neumann non linéaires sur les variétés riemanniennes, C. R. Acad. Sci. Paris Sér. I Math. 292 no. 13 (1981), 637 -640 | MR | Zbl
,[7] Pascal Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math. (2) 108 no. 3 (1984), 225 -262 | MR | Zbl
,[8] Moser–Trudinger trace inequalities, Adv. Math. 217 (2008), 2005 -2044 | MR | Zbl
,[9] Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data, J. Funct. Anal. 227 no. 2 (2005), 430 -490 | MR | Zbl
, , ,[10] On an inequality by N. Trudinger and J. Moser and related elliptic equations, Commun. Pure Appl. Math. 55 (2002), 135 -152 | MR | Zbl
, , ,[11] New solutions for Trudinger–Moser critical equations in , J. Funct. Anal. 258 (2010), 421 -457 | MR | Zbl
, , ,[12] Beyond the Trudinger–Moser supremum, Calc. Var. Partial Differ. Equ. 44 (2012), 543 -576 | MR | Zbl
, , ,[13] S.-B. Deng, M. Musso, New solutions for critical Neumann problems , preprint.
[14] Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992), 471 -497 | EuDML | MR | Zbl
,[15] The heat flow with a critical exponential nonlinearity, J. Funct. Anal. 257 no. 9 (2009), 2951 -2998 | MR | Zbl
, , ,[16] Moser–Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differ. Equ. 14 no. 2 (2001), 163 -192 | MR | Zbl
,[17] Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A 48 no. 5 (2005), 618 -648 | MR | Zbl
,[18] A Moser–Trudinger inequality on the boundary of a compact Riemann surface, Math. Z. 250 no. 2 (2005), 363 -386 | MR | Zbl
, ,[19] Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), 383 -417 | MR | Zbl
, ,[20] Extremal functions for Moser's inequality, Trans. Am. Math. Soc. 348 no. 7 (1996), 2663 -2671 | MR | Zbl
,[21] The concentration–compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoam. 1 (1985), 145 -201 | EuDML | MR | Zbl
,[22] Sobolev Spaces, Springer Ser. Sov. Math. , Springer-Verlag, Berlin (1985) | MR | Zbl
,[23] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970–1971), 1077 -1092 | MR
,[24] A uniqueness theorem for harmonic functions on the upper-half plane, Conform. Geom. Dyn. 4 (2000), 120 -125 | MR | Zbl
,[25] On the Sobolev imbedding theorem for , Doklady Conference, Section Math. Moscow Power Inst. (1965), 158 -170
,[26] Critical points of embeddings of into Orlicz spaces, Ann. Inst. Henri Poincaré 5 no. 5 (1988), 425 -464 | EuDML | Numdam | MR | Zbl
,[27] On embedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473 -483 | MR | Zbl
,[28] Moser–Trudinger trace inequalities on a compact Riemannian surface with boundary, Pac. J. Math. 227 no. 1 (2006), 177 -200 | MR | Zbl
,[29] Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805 -808 | MR
,[30] Classification of conformal metrics on with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions, Calc. Var. Partial Differ. Equ. 16 (2003), 405 -430 | MR | Zbl
,Cited by Sources: