We prove that the number of limit cycles which bifurcate from a two-saddle loop of a planar quadratic Hamiltonian system, under an arbitrary quadratic deformation, is less than or equal to three.
@article{AIHPC_2015__32_2_307_0, author = {Gavrilov, Lubomir and Iliev, Iliya D.}, title = {Perturbations of quadratic {Hamiltonian} two-saddle cycles}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {307--324}, publisher = {Elsevier}, volume = {32}, number = {2}, year = {2015}, doi = {10.1016/j.anihpc.2013.12.001}, mrnumber = {3325239}, zbl = {06444426}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.001/} }
TY - JOUR AU - Gavrilov, Lubomir AU - Iliev, Iliya D. TI - Perturbations of quadratic Hamiltonian two-saddle cycles JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 307 EP - 324 VL - 32 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.001/ DO - 10.1016/j.anihpc.2013.12.001 LA - en ID - AIHPC_2015__32_2_307_0 ER -
%0 Journal Article %A Gavrilov, Lubomir %A Iliev, Iliya D. %T Perturbations of quadratic Hamiltonian two-saddle cycles %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 307-324 %V 32 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.001/ %R 10.1016/j.anihpc.2013.12.001 %G en %F AIHPC_2015__32_2_307_0
Gavrilov, Lubomir; Iliev, Iliya D. Perturbations of quadratic Hamiltonian two-saddle cycles. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 2, pp. 307-324. doi : 10.1016/j.anihpc.2013.12.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.12.001/
[1] Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, Encyclopaedia Math. Sci. vol. 5 , Springer-Verlag, Berlin (1994), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1986) | MR | Zbl
, , , ,[2] Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Liénard systems, Discrete Contin. Dyn. Syst. 27 no. 3 (2010), 963 -980 | MR | Zbl
, , ,[3] Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Math. Acad. Sci. Paris 340 no. 8 (2005), 587 -592 | MR | Zbl
, , ,[4] Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle, Commun. Pure Appl. Anal. 6 no. 1 (2007), 1 -21 | MR | Zbl
, , ,[5] The cyclicity of period annuli of degenerate quadratic Hamiltonian systems with elliptic segment loops, Ergod. Theory Dyn. Syst. 22 no. 2 (2002), 349 -374 | MR | Zbl
, , ,[6] Alien limit cycles in Liénard equations, J. Differ. Equ. 254 no. 3 (2013), 1582 -1600 | MR | Zbl
, , ,[7] A survey of quadratic systems, J. Differ. Equ. 2 (1966), 293 -304 | MR | Zbl
,[8] Hilbert's 16th problem for quadratic vector fields, J. Differ. Equ. 110 no. 1 (1994), 86 -133 | MR | Zbl
, , ,[9] Bifurcations of planar vector fields, Nilpotent Singularities and Abelian Integrals, Lect. Notes Math. vol. 1480 , Springer-Verlag, Berlin (1991) | MR | Zbl
, , , ,[10] Abelian integrals and limit cycles, J. Differ. Equ. 227 no. 1 (2006), 116 -165 | MR | Zbl
, ,[11] Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst. 16 no. 1 (1996), 87 -96 | MR | Zbl
,[12] The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 no. 3 (2001), 449 -497 | MR | Zbl
,[13] Cyclicity of period annuli and principalization of Bautin ideals, Ergod. Theory Dyn. Syst. 28 no. 5 (2008), 1497 -1507 | MR | Zbl
,[14] On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields, Bull. Braz. Math. Soc. 42 no. 1 (2011), 1 -23 | MR | Zbl
,[15] On the number of limit cycles which appear by perturbation of two-saddle cycles of planar vector fields, Funct. Anal. Appl. 47 no. 3 (2013), 174 -186 | MR | Zbl
,[16] Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems, Ergod. Theory Dyn. Syst. 20 no. 6 (2000), 1671 -1686 | MR | Zbl
, ,[17] The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, Am. J. Math. 127 no. 6 (2005), 1153 -1190 | MR | Zbl
, ,[18] On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems, Planar Nonlinear Dynamical Systems Delft, 1995 Differ. Equ. Dyn. Syst. 5 no. 3–4 (1997), 303 -316 | MR | Zbl
, ,[19] On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems, J. Differ. Equ. 113 no. 1 (1994), 84 -105 | MR | Zbl
, ,[20] On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc. 69 no. 1 (1994), 198 -224 | MR | Zbl
, ,[21] Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Differ. Equ. 1 no. 4 (1996), 689 -708 | MR | Zbl
,[22] Perturbations of quadratic centers, Bull. Sci. Math. 122 no. 2 (1998), 107 -161 | MR | Zbl
,[23] Centennial history of Hilbert's 16th problem, Bull., New Ser., Am. Math. Soc. 39 no. 3 (2002), 301 -354 | MR | Zbl
,[24] Lectures on Analytic Differential Equations, Grad. Stud. Math. vol. 86 , American Mathematical Society, Providence, RI (2008) | MR | Zbl
, ,[25] The cyclicity of the elliptic segment loops of the reversible quadratic Hamiltonian systems under quadratic perturbations, J. Differ. Equ. 205 no. 2 (2004), 488 -520 | MR | Zbl
, ,[26] Detecting alien limit cycles near a Hamiltonian 2-saddle cycle, Discrete Contin. Dyn. Syst. 25 no. 4 (2009), 1081 -1108 | MR | Zbl
, , , ,[27] The Chebyshev property of elliptic integrals, Funkc. Anal. Prilozh. 22 no. 1 (1988), 83 -84 | MR | Zbl
,[28] Nonoscillation of elliptic integrals, Funkc. Anal. Prilozh. 24 no. 3 (1990), 45 -50 | MR
,[29] On the Number of Limit Cycles of the Equation , where P and Q are Polynomials of the Second Degree, Transl. Am. Math. Soc. vol. 10 , American Mathematical Society, Providence, RI (1958), 177 -221 | Zbl
, ,[30] A note on finite cyclicity property and Hilbert's 16th problem, Dynamical Systems, Valparaiso, 1986, Lect. Notes Math. vol. 1331 , Springer, Berlin (1988), 161 -168 | MR | Zbl
,[31] Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Prog. Math. vol. 164 , Birkhäuser Verlag, Basel (1998) | MR | Zbl
,[32] Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst. 2 no. 1 (2001), 67 -78 | MR | Zbl
,[33] A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sin. 23 no. 2 (1980), 153 -158 | MR | Zbl
,[34] Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment, Bull. Sci. Math. 125 no. 2 (2001), 109 -138 | MR | Zbl
, ,[35] The cyclicity of triangles and segments in quadratic systems, J. Differ. Equ. 122 no. 1 (1995), 137 -159 | MR | Zbl
,Cited by Sources: