We give a notion of BV function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic forms are given. When we consider sub-Riemannian manifolds, our definition coincides with the one given in the more general context of metric measure spaces which are doubling and support a Poincaré inequality. We focus on finite perimeter sets, i.e., sets whose characteristic function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].
@article{AIHPC_2015__32_3_489_0, author = {Ambrosio, L. and Ghezzi, R. and Magnani, V.}, title = {BV functions and sets of finite perimeter in {sub-Riemannian} manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {489--517}, publisher = {Elsevier}, volume = {32}, number = {3}, year = {2015}, doi = {10.1016/j.anihpc.2014.01.005}, mrnumber = {3353698}, zbl = {1320.53034}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.005/} }
TY - JOUR AU - Ambrosio, L. AU - Ghezzi, R. AU - Magnani, V. TI - BV functions and sets of finite perimeter in sub-Riemannian manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 489 EP - 517 VL - 32 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.005/ DO - 10.1016/j.anihpc.2014.01.005 LA - en ID - AIHPC_2015__32_3_489_0 ER -
%0 Journal Article %A Ambrosio, L. %A Ghezzi, R. %A Magnani, V. %T BV functions and sets of finite perimeter in sub-Riemannian manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 489-517 %V 32 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.005/ %R 10.1016/j.anihpc.2014.01.005 %G en %F AIHPC_2015__32_3_489_0
Ambrosio, L.; Ghezzi, R.; Magnani, V. BV functions and sets of finite perimeter in sub-Riemannian manifolds. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 489-517. doi : 10.1016/j.anihpc.2014.01.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.01.005/
[1] Introduction to Riemannian and sub-Riemannian geometry, http://www.cmapx.polytechnique.fr/~barilari/Notes.php (2012) | Zbl
, , ,[2] On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differ. Equ. 43 (2012), 355 -388 | MR | Zbl
, , ,[3] A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst. 20 no. 4 (2008), 801 -822 | MR | Zbl
, , ,[4] Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 no. 3 (2010), 793 -807 | Numdam | MR | Zbl
, , , , ,[5] Control theory from the geometric viewpoint, Control Theory and Optimization, II, Encycl. Math. Sci. vol. 87 , Springer-Verlag, Berlin (2004) | MR | Zbl
, ,[6] Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 no. 1 (2001), 51 -67 | MR | Zbl
,[7] Fine properties of sets of finite perimeter in doubling metric measure spaces, Set-Valued Anal. 10 no. 2–3 (2002), 111 -128 | MR | Zbl
,[8] Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, arXiv:1212.3779v1 (2012)
, , ,[9] Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport Equations and Multi-D Hyperbolic Conservation Laws, Lect. Notes Unione Mat. Ital. vol. 5 , Springer, Berlin (2008), 3 -57 | MR | Zbl
, ,[10] Equivalent definitions of BV space and of total variation on metric measure spaces, http://cvgmt.sns.it/paper/1860/ (2012) | Zbl
, ,[11] Functions of Bounded Variation and Free Discontinuity Problems, Oxf. Math. Monogr. , The Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl
, , ,[12] Currents in metric spaces, Acta Math. 185 no. 1 (2000), 1 -80 | MR | Zbl
, ,[13] Rectifiable sets in metric and Banach spaces, Math. Ann. 318 no. 3 (2000), 527 -555 | MR | Zbl
, ,[14] Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal. 19 no. 3 (2009), 509 -540 | MR | Zbl
, , ,[15] The tangent space in sub-Riemannian geometry, Sub-Riemannian Geometry, Prog. Math. vol. 144 , Birkhäuser, Basel (1996), 1 -78 | MR | Zbl
,[16] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98 -105 | EuDML | JFM | MR
,[17] Blow-up in non homogeneous lie groups and rectifiability, Houst. J. Math. 31 no. 2 (2005), 333 -353 | MR | Zbl
, ,[18] Su una teoria generale della misura -dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191 -213 | MR | Zbl
,[19] Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad r dimensioni, Ric. Mat. 4 (1955), 95 -113 | MR | Zbl
,[20] Measure Theory and Fine Properties of Functions, Stud. Adv. Math. , CRC Press, Boca Raton, FL (1992) | MR | Zbl
, ,[21] Geometric Measure Theory, Grundlehren Math. Wiss. vol. 153 , Springer-Verlag, New York Inc., New York (1969) | MR | Zbl
,[22] Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houst. J. Math. 22 no. 4 (1996), 859 -890 | MR | Zbl
, , ,[23] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 no. 3 (2001), 479 -531 | MR | Zbl
, , ,[24] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 no. 3 (2003), 421 -466 | MR | Zbl
, , ,[25] Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math. 49 no. 10 (1996), 1081 -1144 | MR | Zbl
, ,[26] On the codimension one motion planning problem, J. Dyn. Control Syst. 11 no. 3 (2005), 73 -89 | MR | Zbl
, ,[27] Nilpotent Lie Groups: Structure and Applications to Analysis, Lect. Notes Math. vol. 562 , Springer-Verlag, Berlin (1976) | MR | Zbl
,[28] Carnot–Carathéodory spaces seen from within, Sub-Riemannian Geometry, Prog. Math. vol. 144 , Birkhäuser, Basel (1996), 79 -323 | MR | Zbl
,[29] Nilpotent and high-order approximations of vector field systems, SIAM Rev. 33 no. 2 (1991), 238 -264 | MR | Zbl
,[30] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 no. 2 (1986), 503 -523 | MR | Zbl
,[31] Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Am. Math. Soc. 121 no. 1 (1994), 113 -123 | MR | Zbl
,[32] On the Poincaré inequality for vector fields, Ark. Mat. 38 no. 2 (2000), 327 -342 | MR | Zbl
, ,[33] Rectifiability of sets of finite perimeter in a class of Carnot groups of arbitrary step, arXiv:1201.3277v1 (2012)
,[34] Some remarks on the definition of tangent cones in a Carnot–Carathéodory space, J. Anal. Math. 80 (2000), 299 -317 | MR | Zbl
, ,[35] Characterizations of intrinsic rectifiability in Heisenberg groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 no. 4 (2010), 687 -723 | Numdam | MR | Zbl
, , ,[36] Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. 82 no. 8 (2003), 975 -1004 | MR | Zbl
,[37] Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 no. 1–2 (1985), 103 -147 | MR | Zbl
, , ,[38] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 no. 1 (1989), 1 -60 | MR | Zbl
,[39] Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 no. 3–4 (1976), 247 -320 | MR | Zbl
, ,Cited by Sources: