We consider a small random perturbation of the energy functional
Keywords: Random functionals, Phase segregation in disordered materials, Fractional Laplacian
@article{AIHPC_2015__32_3_593_0, author = {Dirr, Nicolas and Orlandi, Enza}, title = {Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {593--622}, publisher = {Elsevier}, volume = {32}, number = {3}, year = {2015}, doi = {10.1016/j.anihpc.2014.02.002}, zbl = {1320.35355}, mrnumber = {3353702}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.02.002/} }
TY - JOUR AU - Dirr, Nicolas AU - Orlandi, Enza TI - Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 593 EP - 622 VL - 32 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.02.002/ DO - 10.1016/j.anihpc.2014.02.002 LA - en ID - AIHPC_2015__32_3_593_0 ER -
%0 Journal Article %A Dirr, Nicolas %A Orlandi, Enza %T Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$ %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 593-622 %V 32 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.02.002/ %R 10.1016/j.anihpc.2014.02.002 %G en %F AIHPC_2015__32_3_593_0
Dirr, Nicolas; Orlandi, Enza. Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 3, pp. 593-622. doi : 10.1016/j.anihpc.2014.02.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.02.002/
[1] Rounding effects on quenched randomness on first-order phase transitions, Commun. Math. Phys. 130 (1990), 489 -528 | MR | Zbl
, ,[2] Statistical Mechanics of Disordered Systems. A Mathematical Perspective, Cambridge University Press (2012) | MR | Zbl
,[3] Lévy flights in external force fields: from models to equations, Chem. Phys. 284 (2002), 409 -421
, ,[4] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521 -573 | MR | Zbl
, , ,[5] Anomalous jumping in a double-well potential, Phys. Rev. E 60 (1999), 172 -179
,[6] Sharp-interface limit of a Ginzburg–Landau functional with a random external field, SIAM J. Math. Anal. 41 (2009), 781 -824 | MR | Zbl
, ,[7] Unique minimizer for a random functional with double well potential in dimension 1 and 2, Commun. Math. Sci. 1 (2011), 331 -351 | MR | Zbl
, ,[8] A variational model for dislocation in the line tension limit, Arch. Ration. Mech. Anal. 81 (2006), 535 -578 | MR | Zbl
, ,[9] A singular perturbation result with a fractional norm, Variational Problem in Material Sciences, Prog. Nonlinear Differ. Equ. Appl. vol. 68 (2006), 111 -126 | MR | Zbl
, ,[10] Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ. 36 (2009), 173 -210 | MR
,[11] Martingale Limit Theory and Its Application, Academic Press, New York (1980) | MR | Zbl
, ,[12] Equilibrium States in Ergodic Theory, London Math. Soc. Stud. Texts vol. 42 (1998) | MR | Zbl
,[13] The random walk's guide to anomalous diffusion: a fractional dynamical approach, Phys. Rep. 339 (2000), 1 -77 | MR | Zbl
, ,[14] Local and global minimizers for a variational energy involving fractional norm, Ann. Mat. Pura Appl. 92 (2013), 673 -718 | MR | Zbl
, , ,[15] Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman & Hall, CRC, Boca Raton (2004) | MR | Zbl
, ,[16] Γ-convergence for nonlocal phase transitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), 479 -500 | Numdam | MR | Zbl
, ,[17] Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl. 9 (2014), 1 -26 | MR | Zbl
, ,[18] Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133 -154 | MR | Zbl
, ,[19] Regularity of the obstacle problem for a fractional power of the Laplacian operator, Commun. Pure Appl. Math. 60 (2007), 67 -112 | MR | Zbl
,[20] Fractional diffusion and Lévy stable processes, Phys. Rev. E 55 (1997), 99 -106 | MR
, , , ,Cited by Sources: