In this paper we consider a steady state phase transition problem with given convection v. We prove, among other things, that the weak solution is locally Lipschitz continuous provided that and ξ is a harmonic function. Moreover, for continuous casting problem, i.e. when v is constant vector, we show that Lipschitz free boundaries are regular surfaces.
Keywords: Free boundary, Stefan problem, Phase transition, Convection, Lipschitz regularity, Viscosity solution
@article{AIHPC_2015__32_4_715_0, author = {Karakhanyan, Aram L.}, title = {Optimal regularity for phase transition problems with convection}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {715--740}, publisher = {Elsevier}, volume = {32}, number = {4}, year = {2015}, doi = {10.1016/j.anihpc.2014.03.003}, mrnumber = {3390081}, zbl = {1329.35361}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.003/} }
TY - JOUR AU - Karakhanyan, Aram L. TI - Optimal regularity for phase transition problems with convection JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 715 EP - 740 VL - 32 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.003/ DO - 10.1016/j.anihpc.2014.03.003 LA - en ID - AIHPC_2015__32_4_715_0 ER -
%0 Journal Article %A Karakhanyan, Aram L. %T Optimal regularity for phase transition problems with convection %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 715-740 %V 32 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.003/ %R 10.1016/j.anihpc.2014.03.003 %G en %F AIHPC_2015__32_4_715_0
Karakhanyan, Aram L. Optimal regularity for phase transition problems with convection. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 715-740. doi : 10.1016/j.anihpc.2014.03.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.03.003/
[1] Mathematical Modeling of Melting and Freezing Processes, Taylor & Francis (1993)
, ,[2] Existence and regularity for a minimum problem with free boundary, J. Math. 325 (1981), 105 -144 | EuDML | Zbl
, ,[3] A free boundary problem for quasi-linear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 11 no. 4 (1984), 1 -44 | EuDML | Numdam | MR | Zbl
, , ,[4] Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc. 282 (1984), 431 -461 | Zbl
, , ,[5] Regularity of the free boundary in parabolic phase-transition problems, Acta Math. 176 (1996), 245 -282 | MR | Zbl
, , ,[6] Dynamics of Fluids in Porous Media, Courier Dover Publications (1988) | Zbl
,[7] A Harnack inequality approach to the regularity of free boundaries. Part I, Lipschitz free boundaries are , Rev. Mat. Iberoam. 3 (1987), 139 -162 | EuDML | MR | Zbl
,[8] A Harnack inequality approach to the regularity of free boundaries. Part II, Flat free boundaries are Lipschitz, Commun. Pure Appl. Math. 42 (1989), 55 -78 | MR | Zbl
,[9] The obstacle problem revisited, J. Fourier Anal. Appl. 4 no. 4–5 (1998), 384 -402 | EuDML | MR | Zbl
,[10] Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2) 155 no. 2 (2002), 369 -404 | Zbl
, , ,[11] Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. (2) 151 no. 1 (2000), 269 -292 | EuDML | MR | Zbl
, , ,[12] A Geometric Approach to Free Boundary Problems, Grad. Stud. Math. vol. 68 , AMS (2005) | MR | Zbl
, ,[13] Regularity of the free boundary of a continuous casting problem, Nonlinear Anal. 21 no. 6 (1993), 425 -438 | MR | Zbl
, ,[14] Geometric Measure Theory, Springer (1996) | MR | Zbl
,[15] Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J. 50 no. 3 (2001), 1171 -1200 | MR | Zbl
,[16] Variational Principles and Free Boundary Problems, John Wiley & Sons (1982) | MR | Zbl
,[17] Gradient bounds for harmonic functions Lipschitz on the boundary, Appl. Anal. 73 no. 1–2 (1999), 101 -113 | MR | Zbl
, ,[18] Foundations of Modern Potential Theory, Springer (1973) | MR
,[19] A class of non-degenerate two-phase Stefan problems in several space variables, Commun. Partial Differ. Equ. 12 no. 1 (1987), 21 -45 | MR | Zbl
,[20] Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin (2008) | MR
,[21] Variational Methods in the Stefan problem, Lect. Notes Math. vol. 1584 (1994), 147 -212 | MR | Zbl
,[22] On a two-phase continuous casting Stefan problem with nonlinear flux, Eur. J. Appl. Math. 1 no. 3 (1990), 259 -278 | MR | Zbl
, ,[23] Lectures on Geometric Measure Theory, Centre for Mathematical Analysis, Australian National University (1984) | MR
,[24] The Green function for uniformly elliptic equations, Manuscr. Math. 37 (1968), 303 -342 | EuDML | MR
, ,[25] Modeling of the continuous casting of steel—past, present, and future, Metall. Mater. Trans. B 33B (2002), 395 -812
,Cited by Sources: