A critical fractional equation with concave–convex power nonlinearities
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 875-900.

In this work we study the following fractional critical problem

 $\left({P}_{\lambda }\right)=\left\{\begin{array}{cc}{\left(-\Delta \right)}^{s}u=\lambda {u}^{q}+{u}^{{2}_{s}^{⁎}-1},\phantom{\rule{1em}{0ex}}u>0\hfill & \text{in}\phantom{\rule{4pt}{0ex}}\Omega ,\hfill \\ u=0\hfill & \text{in}\phantom{\rule{4pt}{0ex}}{ℝ}^{n}\setminus \Omega ,\hfill \end{array}$
where $\Omega \subset {ℝ}^{n}$ is a regular bounded domain, $\lambda >0$, $0 and $n>2s$. Here ${\left(-\Delta \right)}^{s}$ denotes the fractional Laplace operator defined, up to a normalization factor, by
 $-{\left(-\Delta \right)}^{s}u\left(x\right)=\underset{{ℝ}^{n}}{\int }\frac{u\left(x+y\right)+u\left(x-y\right)-2u\left(x\right)}{{|y|}^{n+2s}}\phantom{\rule{0.166667em}{0ex}}dy,\phantom{\rule{1em}{0ex}}x\in {ℝ}^{n}.$
Our main results show the existence and multiplicity of solutions to problem $\left({P}_{\lambda }\right)$ for different values of λ. The dependency on this parameter changes according to whether we consider the concave power case ($0) or the convex power case ($1). These two cases will be treated separately.

DOI: 10.1016/j.anihpc.2014.04.003
Classification: 49J35, 35A15, 35S15, 47G20, 45G05
Keywords: Fractional Laplacian, Critical nonlinearities, Convex–concave nonlinearities, Variational techniques, Mountain Pass Theorem
@article{AIHPC_2015__32_4_875_0,
author = {Barrios, B. and Colorado, E. and Servadei, R. and Soria, F.},
title = {A critical fractional equation with concave{\textendash}convex power nonlinearities},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {875--900},
publisher = {Elsevier},
volume = {32},
number = {4},
year = {2015},
doi = {10.1016/j.anihpc.2014.04.003},
mrnumber = {3390088},
zbl = {1350.49009},
language = {en},
url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.003/}
}
TY  - JOUR
AU  - Barrios, B.
AU  - Soria, F.
TI  - A critical fractional equation with concave–convex power nonlinearities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 875
EP  - 900
VL  - 32
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.003/
DO  - 10.1016/j.anihpc.2014.04.003
LA  - en
ID  - AIHPC_2015__32_4_875_0
ER  - 
%0 Journal Article
%A Barrios, B.
%A Soria, F.
%T A critical fractional equation with concave–convex power nonlinearities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 875-900
%V 32
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.003/
%R 10.1016/j.anihpc.2014.04.003
%G en
%F AIHPC_2015__32_4_875_0
Barrios, B.; Colorado, E.; Servadei, R.; Soria, F. A critical fractional equation with concave–convex power nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 875-900. doi : 10.1016/j.anihpc.2014.04.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.003/

[1] B. Abdellaoui, E. Colorado, I. Peral, Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Adv. Differ. Equ. 11 no. 6 (2006), 667 -720 | MR | Zbl

[2] R. Adams, Sobolev Spaces, Academic Press (1975) | MR | Zbl

[3] S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Differ. Equ. 4 (1999), 813 -842 | MR | Zbl

[4] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 no. 2 (1994), 519 -543 | MR | Zbl

[5] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349 -381 | MR | Zbl

[6] D. Applebaum, Lévy Processes and Stochastic Calculus, Camb. Stud. Adv. Math. vol. 116 , Cambridge University Press, Cambridge (2009) | MR | Zbl

[7] B. Barrios, E. Colorado, A. De Pablo, U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differ. Equ. 252 (2012), 6133 -6162 | MR | Zbl

[8] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, http://dx.doi.org/10.1142/S0219199713500466 | Zbl

[9] J. Bertoin, Lévy Processes, Camb. Tracts Math. vol. 121 , Cambridge University Press, Cambridge (1996) | MR | Zbl

[10] L. Boccardo, M. Escobedo, I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 no. 11 (1995), 1639 -1648 | MR | Zbl

[11] C. Brändle, E. Colorado, A. De Pablo, U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb. A 143 (2013), 39 -71 | MR | Zbl

[12] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 no. 3 (1983), 486 -490 | MR | Zbl

[13] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 no. 4 (1983), 437 -477 | MR | Zbl

[14] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052 -2093 | MR | Zbl

[15] L. Caffarelli, J.M. Roquejoffre, Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. 12 (2010), 1151 -1179 | EuDML | MR | Zbl

[16] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2003), 1245 -1260 | MR | Zbl

[17] F. Charro, E. Colorado, I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side, J. Differ. Equ. 246 no. 11 (2009), 4221 -4248 | MR | Zbl

[18] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468 -507 | MR | Zbl

[19] E. Colorado, A. De Pablo, U. Sanchez, Perturbations of a critical fractional equation, Pac. J. Math. (2014) | MR | Zbl

[20] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, Fl (2004) | MR | Zbl

[21] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225 -236 | MR | Zbl

[22] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521 -573 | MR | Zbl

[23] M.M. Fall, T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 no. 8 (2012), 2205 -2227 | MR | Zbl

[24] A. Fiscella, R. Servade, E. Valdinoci, Density properties for fractional Sobolev spaces, preprint, 2013. | MR

[25] J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Am. Math. Soc. 323 no. 2 (1991), 877 -895 | MR | Zbl

[26] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 no. 5 (1989), 321 -330 | EuDML | Numdam | MR | Zbl

[27] A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics Los Alamos, NM, 1995 Physica D 98 no. 2–4 (1996), 515 -522 | MR | Zbl

[28] V. Maz'Ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren Math. Wiss. vol. 342 , Springer, Heidelberg (2011) | MR

[29] N. Meyers, J. Serrin, $H=W$ , Proc. Natl. Acad. Sci. USA 51 (1964), 1055 -1056 | MR | Zbl

[30] G. Molica Bisci, R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl

[31] E. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 no. 2 (1983), 349 -374 | MR | Zbl

[32] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 no. 1 (1985), 145 -201 | EuDML | MR | Zbl

[33] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 no. 2 (1985), 45 -121 | EuDML | MR | Zbl

[34] G. Palatucci, A. Pisante, Improved Sobolev embeddings, profile decomposition and concentration–compactness for fractional Sobolev spaces, arXiv:1302.5923 | MR | Zbl

[35] J. Serra, X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 no. 3 (2014), 275 -302 | MR | Zbl

[36] J. Serra, X. Ros-Oton, The Pohozaev identity for the fractional Laplacian, arXiv:1207.5986 [math.AP] | MR | Zbl

[37] R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 2 (2013), 235 -270 | MR | Zbl

[38] R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 no. 1 (2014), 251 -267 | MR

[39] R. Servadei, E. Valdinoci, Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam. 29 (2013), 1091 -1126 | MR | Zbl

[40] R. Servadei, E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887 -898 | MR | Zbl

[41] R. Servadei, E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc. (2014) | MR | Zbl

[42] R. Servadei, E. Valdinoci, A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 no. 6 (2013), 2445 -2464 | MR | Zbl

[43] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl

[44] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 no. 1 (2014), 133 -154 | MR | Zbl

[45] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 no. 1 (2007), 67 -112 | MR | Zbl

[46] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princet. Math. Ser. vol. 30 , Princeton University Press, Princeton, NJ (1970) | MR | Zbl

[47] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Ihrer Grenzgeb. vol. 3 , Springer-Verlag, Berlin, Heidelberg (1990) | MR | Zbl

[48] J. Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ. 36 no. 1–2 (2011), 21 -41 | MR | Zbl

[49] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. Se MA 49 (2009), 33 -44 | MR | Zbl

[50] L. Vlahos, H. Isliker, Y. Kominis, K. Hizonidis, Normal and anomalous diffusion: a tutorial, T. Bountis (ed.), Order and Chaos, 10th Volume, Patras University Press (2008)

[51] M. Willem, Minimax Theorems, Prog. Nonlinear Differ. Equ. Appl. vol. 24 , Birkhäuser, Boston (1996) | MR | Zbl

Cited by Sources: