We consider a minimization problem that combines the Dirichlet energy with the nonlocal perimeter of a level set, namely
@article{AIHPC_2015__32_4_901_0, author = {Caffarelli, Luis and Savin, Ovidiu and Valdinoci, Enrico}, title = {Minimization of a fractional {perimeter-Dirichlet} integral functional}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {901--924}, publisher = {Elsevier}, volume = {32}, number = {4}, year = {2015}, doi = {10.1016/j.anihpc.2014.04.004}, mrnumber = {3390089}, zbl = {1323.35216}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.004/} }
TY - JOUR AU - Caffarelli, Luis AU - Savin, Ovidiu AU - Valdinoci, Enrico TI - Minimization of a fractional perimeter-Dirichlet integral functional JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 901 EP - 924 VL - 32 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.004/ DO - 10.1016/j.anihpc.2014.04.004 LA - en ID - AIHPC_2015__32_4_901_0 ER -
%0 Journal Article %A Caffarelli, Luis %A Savin, Ovidiu %A Valdinoci, Enrico %T Minimization of a fractional perimeter-Dirichlet integral functional %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 901-924 %V 32 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.004/ %R 10.1016/j.anihpc.2014.04.004 %G en %F AIHPC_2015__32_4_901_0
Caffarelli, Luis; Savin, Ovidiu; Valdinoci, Enrico. Minimization of a fractional perimeter-Dirichlet integral functional. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 4, pp. 901-924. doi : 10.1016/j.anihpc.2014.04.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.004/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105 -144 | EuDML | MR | Zbl
, ,[2] Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc. 282 no. 2 (1984), 431 -461 | MR | Zbl
, , ,[3] Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math. 134 no. 3–4 (2011), 377 -403 | MR | Zbl
, , ,[4] An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math. 54 no. 4 (2001), 479 -499 | MR | Zbl
, , , ,[5] Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) (2014), http://dx.doi.org/10.2422/2036-2145.201202_007 | MR | Zbl
, , ,[6] Nonlocal minimal surfaces, Commun. Pure Appl. Math. 63 no. 9 (2010), 1111 -1144 | MR | Zbl
, , ,[7] Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ. 41 no. 1–2 (2011), 203 -240 | MR | Zbl
, ,[8] Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl. 10 (2000), 821 -849 | MR | Zbl
, ,[9] Asymptotics of the s-perimeter as , Discrete Contin. Dyn. Syst. 33 no. 7 (2013), 2777 -2790 | MR | Zbl
, , , ,[10] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 no. 2 (2002), 230 -238 | MR | Zbl
, ,[11] Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal. 43 no. 6 (2011), 2675 -2687 | MR | Zbl
, ,[12] Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ. 48 no. 1–2 (2013), 33 -39 | MR | Zbl
, ,[13] Some monotonicity results for minimizers in the calculus of variations, J. Funct. Anal. 264 no. 10 (2013), 2469 -2496 | MR | Zbl
, ,Cited by Sources: