We address and answer the question of optimal lifting estimates for unimodular complex valued maps: given and , find the best possible estimate of the form .The most delicate case is . In this case, we extend the results obtained in [3,4] for (using Fourier analysis and optimal constants in the Sobolev embeddings) by developing non- estimates and an approach based on symmetrization. Following an idea of Bourgain (presented in [3]), our proof also relies on averaged estimates for martingales. As a byproduct of our arguments, we obtain a characterization of fractional Sobolev spaces with involving averaged martingale estimates.Also when , we propose a new phase construction method, based on oscillations detection, and discuss existence of a bounded phase.When , we extend to higher dimensions a result on optimal estimates of Merlet [20], based on one-dimensional arguments. This extension requires new ingredients (factorization techniques, duality methods).
@article{AIHPC_2015__32_5_965_0, author = {Mironescu, Petru and Molnar, Ioana}, title = {Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of {Sobolev} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {965--1013}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.04.005}, mrnumber = {3400439}, zbl = {1339.46037}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.005/} }
TY - JOUR AU - Mironescu, Petru AU - Molnar, Ioana TI - Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 965 EP - 1013 VL - 32 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.005/ DO - 10.1016/j.anihpc.2014.04.005 LA - en ID - AIHPC_2015__32_5_965_0 ER -
%0 Journal Article %A Mironescu, Petru %A Molnar, Ioana %T Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 965-1013 %V 32 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.005/ %R 10.1016/j.anihpc.2014.04.005 %G en %F AIHPC_2015__32_5_965_0
Mironescu, Petru; Molnar, Ioana. Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 5, pp. 965-1013. doi : 10.1016/j.anihpc.2014.04.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.04.005/
[1] Sobolev Spaces, Pure and Applied Mathematics vol. 65 , Academic Press, New York–London (1975) | MR | Zbl
,[2] Ondelettes et espaces de Besov, Rev. Mat. Iberoam. 11 no. 3 (1995), 477 -512 | EuDML | MR | Zbl
,[3] Lifting in Sobolev spaces, J. Anal. Math. 80 (2000), 37 -86 | MR | Zbl
, , ,[4] Limiting embedding theorems for when and applications, J. Anal. Math. 87 (2002), 77 -101 | MR | Zbl
, , ,[5] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 1 -115 | EuDML | Numdam | MR | Zbl
, , ,[6] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 no. 4 (2005), 529 -551 | MR | Zbl
, , ,[7] H. Brezis, P. Mironescu, Sobolev maps with values into the circle. Analytical, geometrical and topological aspects, in preparation.
[8] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 no. 4 (2001), 387 -404 | MR | Zbl
, ,[9] Degree theory and BMO, Part I: Compact manifolds without boundaries, Sel. Math. New Ser. 1 no. 2 (1995), 197 -263 | MR | Zbl
, ,[10] Degree theory and BMO, Part II: Compact manifolds with boundaries, Sel. Math. New Ser. 2 (1996), 309 -368 | MR | Zbl
, ,[11] Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and Its Applications vol. 14 , The Clarendon Press Oxford University Press, New York (1998) | MR | Zbl
,[12] Lifting of BV functions with values in , C. R. Math. Acad. Sci. Paris 337 no. 3 (2003), 159 -164 | MR | Zbl
, ,[13] BMO from dyadic BMO, Pac. J. Math. 99 no. 2 (1982), 351 -371 | MR | Zbl
, ,[14] Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24 no. 2 (1974), 67 -116 | EuDML | Numdam | MR | Zbl
, ,[15] A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/1971), 565 -578 | MR | Zbl
, , ,[16] Classical Fourier Analysis, Graduate Texts in Mathematics vol. 249 , Springer, New York (2008) | MR | Zbl
,[17] Analysis, Graduate Studies in Mathematics , American Mathematical Society (2001) | MR | Zbl
, ,[18] B. Matei, P. Mironescu, On the sum-intersection property of classical function spaces, in preparation.
[19] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] vol. 342 , Springer, Heidelberg (2011) | MR | Zbl
,[20] Two remarks on liftings of maps with values into , C. R. Math. Acad. Sci. Paris 343 no. 7 (2006), 467 -472 | MR | Zbl
,[21] P. Mironescu, Sobolev spaces of circle-valued maps, in preparation.
[22] Decomposition of -valued maps in Sobolev spaces, C. R. Math. Acad. Sci. Paris 348 no. 13–14 (2010), 743 -746 | MR | Zbl
,[23] -valued Sobolev mappings, J. Math. Sci. (N.Y.) 170 no. 3 (2010), 340 -355 | MR | Zbl
,[24] P. Mironescu, E. Russ, Traces and restrictions in function spaces. Old and new, in preparation.
[25] P. Mironescu, E. Russ, Y. Sire, Lifting in Besov spaces, in preparation.
[26] Inequalities related to liftings and applications, C. R. Math. Acad. Sci. Paris 346 (2008), 957 -962 | MR | Zbl
,[27] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications vol. 3 , Walter de Gruyter & Co., Berlin (1996) | MR | Zbl
, ,[28] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series vol. 43 , Princeton University Press, Princeton, NJ (1993) | MR | Zbl
,[29] Theory of Function Spaces, Monographs in Mathematics vol. 78 , Birkhäuser Verlag, Basel (1983) | MR | Zbl
,[30] Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova 60 (1961), 282 -303 | MR | Zbl
,[31] A quasihomogeneous version of paradifferential operators. II. A symbol calculus, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 33 no. 2 (1986), 311 -345 | MR | Zbl
,Cited by Sources: