We consider two dimensional real-valued analytic potentials for the Schrödinger equation which are periodic over a lattice . Under certain assumptions on the form of the potential and the lattice , we can show there is a large class of analytic potentials which are Floquet rigid and dense in the set of potentials. The result extends the work of Eskin et al., in “On isospectral periodic potentials in , II.”
Nous considérons les potentiels analytiques à valeurs réelles en dimension deux pour l'equation de Schrödinger qui sont périodiques sur un réseau . Sous certaines hypothèses sur la forme du potentiel et du réseau , nous montrons qu' il y a une grande classe de potentiels analytiques Floquet rigides et denses dans l'ensemble de potentiels. Ce résultat prolonge le travail de Eskin et al., dans “Les potentiels périodiques isospectraux dans , II.”
Keywords: Inverse problems, Spectral theory, Schrödinger equations
@article{AIHPC_2015__32_6_1173_0, author = {Waters, Alden}, title = {Isospectral periodic {Torii} in dimension 2}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1173--1188}, publisher = {Elsevier}, volume = {32}, number = {6}, year = {2015}, doi = {10.1016/j.anihpc.2014.06.001}, mrnumber = {3425258}, zbl = {1332.35239}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.06.001/} }
TY - JOUR AU - Waters, Alden TI - Isospectral periodic Torii in dimension 2 JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1173 EP - 1188 VL - 32 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.06.001/ DO - 10.1016/j.anihpc.2014.06.001 LA - en ID - AIHPC_2015__32_6_1173_0 ER -
%0 Journal Article %A Waters, Alden %T Isospectral periodic Torii in dimension 2 %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1173-1188 %V 32 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.06.001/ %R 10.1016/j.anihpc.2014.06.001 %G en %F AIHPC_2015__32_6_1173_0
Waters, Alden. Isospectral periodic Torii in dimension 2. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, pp. 1173-1188. doi : 10.1016/j.anihpc.2014.06.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.06.001/
[1] A class of solutions of the Korteweg–de Vries equation, Probl. Math. Phys. 79 no. 9 (1976) | MR
, ,[2] Dispersion for Schrödinger operators with one-gap periodic potentials on , Dyn. Partial Differ. Equ. 3 no. 1 (2006), 71 -92 | MR | Zbl
,[3] On isospectral periodic potentials in , Commun. Pure Appl. Math. 37 no. 6 (1984), 715 -753 | MR | Zbl
, , ,[4] On isospectral periodic potentials in . ii, Commun. Pure Appl. Math. 37 no. 5 (1984), 647 -676 | MR | Zbl
, , ,[5] Gaps and bands of one-dimensional periodic Schrödinger operators, Comment. Math. Helv. 59 no. 2 (1984), 258 -312 | EuDML | MR | Zbl
, ,[6] On isospectral potentials on tori, Duke Math. J. 63 no. 2 (1991), 217 -233 | MR | Zbl
, ,[7] On isospectral potentials on flat tori ii, Commun. Partial Differ. Equ. 20 no. 3–4 (1995), 709 -728 | MR | Zbl
, ,[8] On the determination of a Hill's equation from its spectrum, Arch. Ration. Mech. Anal. 19 (1965), 353 -362 | MR | Zbl
,[9] On Birkhoff coordinates for KdV, Ann. Henri Poincaré 2 (2001), 806 -856 | MR | Zbl
, ,[10] Estimates for the Hill operator, J. Differ. Equ. 162 no. 1 (2000), 1 -26 | MR | Zbl
,[11] Estimates for the Hill operator, ii, J. Differ. Equ. 223 (2006), 229 -260 | MR | Zbl
,[12] Hill's Equation, Dover Publications Inc., New York (1979) | MR | Zbl
, ,[13] Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math. 29 no. 2 (1976), 143 -226 | MR | Zbl
, ,[14] Inverse Spectral Theory, Academic Press [Harcourt Brace Jovanovich Publishers] (1987) | Zbl
, ,[15] Complex Analysis, Princeton Lectures in Analysis, II , Princeton University Press, Princeton, NJ (2003) | MR | Zbl
, ,[16] The inverse problem for periodic potentials, Commun. Pure Appl. Math. 30 no. 3 (1977), 321 -337 | MR | Zbl
,Cited by Sources: