On minimizers of interaction functionals with competing attractive and repulsive potentials
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 6, pp. 1283-1305.

We consider a family of interaction functionals consisting of power-law potentials with attractive and repulsive parts and use the concentration compactness principle to establish the existence of global minimizers. We consider various minimization classes, depending on the signs of the repulsive and attractive power exponents of the potential. In the special case of quadratic attraction and Newtonian repulsion we characterize in detail the ground state.

DOI : 10.1016/j.anihpc.2014.09.004
Classification : 45J45, 92D25, 35A15, 35B36
Mots clés : Interaction of attractive and repulsive potentials, Self-assembly, Aggregation, Global minimizers
@article{AIHPC_2015__32_6_1283_0,
     author = {Choksi, Rustum and Fetecau, Razvan C. and Topaloglu, Ihsan},
     title = {On minimizers of interaction functionals with competing attractive and repulsive potentials},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1283--1305},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.09.004},
     mrnumber = {3425263},
     zbl = {1329.49019},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.004/}
}
TY  - JOUR
AU  - Choksi, Rustum
AU  - Fetecau, Razvan C.
AU  - Topaloglu, Ihsan
TI  - On minimizers of interaction functionals with competing attractive and repulsive potentials
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 1283
EP  - 1305
VL  - 32
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.004/
DO  - 10.1016/j.anihpc.2014.09.004
LA  - en
ID  - AIHPC_2015__32_6_1283_0
ER  - 
%0 Journal Article
%A Choksi, Rustum
%A Fetecau, Razvan C.
%A Topaloglu, Ihsan
%T On minimizers of interaction functionals with competing attractive and repulsive potentials
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 1283-1305
%V 32
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.004/
%R 10.1016/j.anihpc.2014.09.004
%G en
%F AIHPC_2015__32_6_1283_0
Choksi, Rustum; Fetecau, Razvan C.; Topaloglu, Ihsan. On minimizers of interaction functionals with competing attractive and repulsive potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 6, pp. 1283-1305. doi : 10.1016/j.anihpc.2014.09.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.004/

[1] D. Benedetto, E. Caglioti, M. Pulvirenti, A kinetic equation for granular media, Modél. Math. Anal. Numér. 31 no. 5 (1997), 615 -641 | EuDML | Numdam | MR | Zbl

[2] A. Bertozzi, J. Carrillo, T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22 no. 3 (2009), 683 -710 | MR | Zbl

[3] A. Bertozzi, T. Laurent, Finite-time blow-up of solutions of an aggregation equation in 𝐑 n , Commun. Math. Phys. 274 no. 3 (2007), 717 -735 | MR | Zbl

[4] M. Bodnar, J. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differ. Equ. 222 no. 2 (2006), 341 -380 | MR | Zbl

[5] K. Fellner, G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci. 20 no. 12 (2010), 2267 -2291 | MR | Zbl

[6] R.C. Fetecau, Y. Huang, T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity 24 no. 10 (2011), 2681 -2716 | MR | Zbl

[7] D. Holm, V. Putkaradze, Aggregation of finite-size particles with variable mobility, Phys. Rev. Lett. 95 (2005), 226106

[8] D. Holm, V. Putkaradze, Formation of clumps and patches in selfaggregation of finite-size particles, Physica D 220 no. 2 (2006), 183 -196 | MR | Zbl

[9] Y. Huang, A. Bertozzi, Self-similar blowup solutions to an aggregation equation in n , SIAM J. Appl. Math. 70 no. 7 (2010), 2582 -2603 | MR | Zbl

[10] A. Leverentz, C. Topaz, A. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst. 8 no. 3 (2009), 880 -908 | MR | Zbl

[11] A. Mogilner, L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol. 38 (1999), 534 -570 | MR | Zbl

[12] C. Topaz, A. Bertozzi, M. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (2006), 1601 -1623 | MR | Zbl

[13] G. Toscani, One-dimensional kinetic models of granular flows, Modél. Math. Anal. Numér. 34 no. 6 (2000), 1277 -1291 | EuDML | Numdam | MR | Zbl

[14] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich , Birkhäuser Verlag, Basel (2008) | MR | Zbl

[15] J.A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent, D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J. 156 no. 2 (2011), 229 -271 | MR | Zbl

[16] J. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley and Sons, Inc., New York (1992)

[17] D. Balagué, J. Carrillo, T. Laurent, G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Physica D 260 (2013), 5 -25 | MR | Zbl

[18] R.C. Fetecau, Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Physica D 260 (2013), 49 -64 | MR | Zbl

[19] T. Kolokolnikov, H. Sun, D. Uminsky, A. Bertozzi, A theory of complex patterns arising from 2D particle interactions, Phys. Rev. E, Rapid Commun. 84 (2011), 015203(R)

[20] J. Von Brecht, D. Uminsky, T. Kolokolnikov, A. Bertozzi, Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci. 22 no. 1 (2012), 1140002 | MR | Zbl

[21] D. Balagué, J. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal. 209 (2013), 1055 -1088 | MR | Zbl

[22] M. Bodnar, J. Velasquez, Derivation of macroscopic equations for individual cell-based models: a formal approach, Math. Models Methods Appl. Sci. 28 (2005), 1757 -1779 | MR | Zbl

[23] J. Carrillo, M. Chipot, Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, preprint. | MR

[24] J. Carrillo, M. Delgadino, A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, preprint. | MR

[25] J. Cañizo, J. Carrillo, F. Patacchini, Existence of compactly supported global minimizers for the interaction energy, preprint. | MR

[26] R. Simione, D. Slepčev, I. Topaloglu, Existence of minimizers of nonlocal interaction energies, preprint.

[27] J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak–Keller–Segel models, Commun. Math. Sci. 9 no. 4 (2011), 1143 -1161 | MR | Zbl

[28] J. Bedrossian, N. Rodríguez, A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion, Nonlinearity 24 (2011), 1683 -1714 | MR | Zbl

[29] A. Bertozzi, D. Slepčev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Commun. Pure Appl. Anal. 9 no. 6 (2010), 1617 -1637 | MR | Zbl

[30] A. Blanchet, J. Carrillo, P. Laurençot, Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differ. Equ. 35 no. 2 (2009), 133 -168 | MR | Zbl

[31] M. Burger, V. Capasso, D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal., Real World Appl. 8 no. 3 (2007), 939 -958 | MR | Zbl

[32] M. Burger, M. Difrancesco, Large time behavior of nonlocal aggregation models with nonlinear diffusion, Netw. Heterog. Media 3–4 (2008), 749 -785 | MR | Zbl

[33] M. Burger, M. Difrancesco, M. Franek, Stationary states of quadratic diffusion equations with long-range attraction, Commun. Math. Sci. 3 (2013), 709 -738 | MR | Zbl

[34] M. Burger, R.C. Fetecau, Y. Huang, Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst. 13 (2014), 397 -424 | MR | Zbl

[35] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Lett. 24 no. 11 (2011), 1927 -1932 | MR | Zbl

[36] J. Auchmuty, Existence of axisymmetric equilibrium figures, Arch. Ration. Mech. Anal. 65 no. 3 (1977), 249 -261 | MR | Zbl

[37] J. Auchmuty, R. Beals, Variational solutions of some nonlinear free boundary problems, Arch. Ration. Mech. Anal. 43 (1971), 255 -271 | MR | Zbl

[38] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 no. 2 (1984), 109 -145 | EuDML | Numdam | MR | Zbl

[39] C. Le Bris, Some results on the Thomas–Fermi–Dirac–von Weizsäcker model, Differ. Integral Equ. 6 (1993), 337 -353 | MR | Zbl

[40] C. Le Bris, P.-L. Lions, From atoms to crystals: a mathematical journey, Bull. Am. Math. Soc. 42 no. 3 (2005), 291 -363 | MR | Zbl

[41] E. Lieb, Thomas–Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 52 (1981), 603 -641 | MR | Zbl

[42] J. Lu, F. Otto, Nonexistence of a minimizer for the Thomas–Fermi–Dirac–von Weizsäcker model, Commun. Pure Appl. Math. 67 no. 10 (2014), 1605 -1617 | MR | Zbl

[43] R. Choksi, M. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp interface functional, SIAM J. Math. Anal. 42 no. 3 (2010), 1334 -1370 | MR | Zbl

[44] R. Choksi, M. Peletier, Small volume fraction limit of the diblock copolymer problem: II. Diffuse interface functional, SIAM J. Math. Anal. 43 no. 2 (2011), 739 -763 | MR | Zbl

[45] R. Choksi, P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. Reine Angew. Math. 611 (2007), 75 -108 | MR | Zbl

[46] V. Julin, Isoperimetric problem with a coulombic repulsive term, preprint. | MR

[47] H. Knuepfer, C. Muratov, On an isoperimetric problem with a competing non-local term. I. The planar case, Commun. Pure Appl. Math. 66 no. 7 (2013), 1129 -1162 | MR | Zbl

[48] H. Knuepfer, C. Muratov, On an isoperimetric problem with a competing non-local term. II. The general case, Commun. Pure Appl. Math. (2014), http://dx.doi.org/10.1002/cpa.21479

[49] H. Poincaré, Sur une théorème de M. Liapunoff rélatif a l'équilibre d'une masse fluide, C. R. Acad. Sci. 104 (1887), 622 -625

[50] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57 (1977), 93 -105 | MR | Zbl

[51] E. Lieb, M. Loss, Analysis.

[52] A. Bertozzi, J. Von Brecht, H. Sun, T. Kolokolnikov, D. Uminsky, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci. (2014), http://www.math.ucla.edu/~bertozzi/papers/bigring-final.pdf | Zbl

[53] K. Craig, A. Bertozzi, A blob method for the aggregation equation, preprint. | MR

[54] J.A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent, D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal. 75 no. 2 (2012), 550 -558 | MR | Zbl

[55] A. Bertozzi, T. Laurent, L. Flavien, Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions, Math. Models Methods Appl. Sci. 22 no. 1 (2012), 1140005 | MR | Zbl

[56] K. Fellner, G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Model. 53 no. 7–8 (2011), 1436 -1450 | MR | Zbl

[57] E. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. (2) 118 no. 2 (1983), 349 -374 | MR | Zbl

[58] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin (2000) | MR | Zbl

[59] P. Billingsley, Weak Convergence of Measures: Applications in Probability, Society for Industrial and Applied Mathematics, Philadelphia, PA (1971) | MR | Zbl

[60] A. Bernoff, C. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst. 10 no. 1 (2011), 212 -250 | MR | Zbl

Cité par Sources :