Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 621-654.

Sharp and local L1 a posteriori error estimates are established for so-called “well-balanced” BV (hence possibly discontinuous) numerical approximations of 2×2 space-dependent Jin–Xin relaxation systems under sub-characteristic condition. According to the strength of the relaxation process, one can distinguish between two complementary regimes: 1) a weak relaxation, where local L1 errors are shown to be of first order in Δx and uniform in time, 2) a strong relaxation, where numerical solutions are kept close to entropy solutions of the reduced scalar conservation law, and for which Kuznetsov's theory indicates a behavior of the L1 error in tΔx. The uniformly first-order accuracy in weak relaxation regime is obtained by carefully studying interaction patterns and building up a seemingly original variant of Bressan–Liu–Yang's functional, able to handle BV solutions of arbitrary size for these particular inhomogeneous systems. The complementary estimate in strong relaxation regime is proven by means of a suitable extension of methods based on entropy dissipation for space-dependent problems. Preliminary numerical illustrations are provided.

DOI : 10.1016/j.anihpc.2015.01.001
Classification : 35L60, 65M06
Mots clés : Bressan–Liu–Yang functional, Entropy dissipation, Kuznetsov's method, $ {L}^{1}$ error estimate, Space-dependent relaxation model
@article{AIHPC_2016__33_3_621_0,
     author = {Amadori, Debora and Gosse, Laurent},
     title = {Stringent error estimates for one-dimensional, space-dependent 2{\texttimes}2 relaxation systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {621--654},
     publisher = {Elsevier},
     volume = {33},
     number = {3},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.001},
     zbl = {1339.35170},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.001/}
}
TY  - JOUR
AU  - Amadori, Debora
AU  - Gosse, Laurent
TI  - Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 621
EP  - 654
VL  - 33
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.001/
DO  - 10.1016/j.anihpc.2015.01.001
LA  - en
ID  - AIHPC_2016__33_3_621_0
ER  - 
%0 Journal Article
%A Amadori, Debora
%A Gosse, Laurent
%T Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 621-654
%V 33
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.001/
%R 10.1016/j.anihpc.2015.01.001
%G en
%F AIHPC_2016__33_3_621_0
Amadori, Debora; Gosse, Laurent. Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 621-654. doi : 10.1016/j.anihpc.2015.01.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.001/

[1] Amadori, D.; Gosse, L. Transient L1 error estimates for well-balanced schemes on non-resonant scalar balance laws, J. Differ. Equ., Volume 255 (2013), pp. 469–502 | DOI | Zbl

[2] D. Amadori, L. Gosse, Error estimates for well-balanced and time-split schemes on a locally damped semilinear wave equation, preprint, 2013.

[3] Amadori, D.; Guerra, G. Global BV solutions and relaxation limit for a system of conservation laws, Proc. R. Soc. Edinb. A, Volume 131 (2001), pp. 1–26 | DOI | Zbl

[4] Bianchini, S. A Glimm-type functional for a special Jin–Xin relaxation model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001) no. 1, pp. 19–42 | DOI | Numdam | Zbl

[5] Bianchini, S. Relaxation limit of the Jin–Xin relaxation model, Commun. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 688–753 | DOI | Zbl

[6] Bianchini, S.; Hanouzet, B.; Natalini, R. Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1559–1622 | DOI | Zbl

[7] Bouchut, F.; Perthame, B. Kružkov's estimates for scalar conservation laws revisited, Trans. Am. Math. Soc., Volume 350 (1998) no. 7, pp. 2847–2870 | DOI | Zbl

[8] Bressan, A. Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford University Press, Oxford, 2000 | Zbl

[9] Bressan, A.; Liu, T.-P.; Yang, T. L1 stability estimates for n×n conservation laws, Arch. Ration. Mech. Anal., Volume 149 (1999), pp. 1–22 | DOI | Zbl

[10] Edwards, A.; Perthame, B.; Seguin, N.; Tournus, M. Analysis of a simplified model of the urine concentration mechanism, Netw. Heterog. Media, Volume 7 (2012), pp. 989–1018 | Zbl

[11] Cockburn, B.; Gau, H. A posteriori error estimates for general numerical schemes for conservations laws, Mat. Apl. Comput., Volume 14 (1995), pp. 37–47 | Zbl

[12] Coquel, F.; Jin, S.; Liu, J.-G.; Wang, L. Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate, Arch. Ration. Mech. Anal., Volume 214 (2014), pp. 1051–1084 | DOI | Zbl

[13] E, W. Homogenization of scalar conservation laws with oscillatory forcing terms, SIAM J. Appl. Math., Volume 52 (1992), pp. 959–972 | Zbl

[14] Glimm, J.; Sharp, D.H. An S-matrix theory for classical nonlinear physics, Found. Phys., Volume 16 (1986), pp. 125–141 | DOI

[15] Gosse, L. Time-splitting schemes and measure source terms for a quasilinear relaxing system, Math. Models Methods Appl. Sci., Volume 13 (2003) no. 8, pp. 1081–1101 | DOI | Zbl

[16] Gosse, L. Computing Qualitatively Correct Approximations of Balance Laws, SIMAI Springer Ser., vol. 2, Springer, 2013 | Zbl

[17] Gosse, L. Redheffer products and numerical approximation of currents in one-dimensional semiconductor kinetic models, SIAM Multiscale Model. Simul., Volume 12 (2014) no. 4, pp. 1533–1560 | DOI | Zbl

[18] Gosse, L. A well-balanced scheme able to cope with hydrodynamic limits for linear kinetic models, Appl. Math. Lett., Volume 42 (2015), pp. 15–21 | DOI | Zbl

[19] Gosse, L.; Makridakis, Ch. Two a posteriori error estimates for one-dimensional scalar conservation laws, SIAM J. Numer. Anal., Volume 30 (2000), pp. 964–988 | Zbl

[20] Gosse, L.; Toscani, G. Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., Volume 41 (2004), pp. 641–658 | Zbl

[21] Gosse, L.; Tzavaras, A. Convergence of relaxation schemes to the equations of elastodynamics, Math. Comput., Volume 70 (2001) no. 234, pp. 555–577 | DOI | Zbl

[22] Jin, S.; Xin, Z. The relaxation schemes for systems of conservation laws in arbitrary space dimension, Commun. Pure Appl. Math., Volume 48 (1995), pp. 235–276 | Zbl

[23] Katsoulakis, M.A.; Kossioris, G.; Makridakis, Ch. Convergence and error estimates of relaxation schemes for multi dimensional conservation laws, Commun. Partial Differ. Equ., Volume 24 (1999) no. 3–4, pp. 395–422 | Zbl

[24] Katsoulakis, M.A.; Tzavaras, A.E. Contractive relaxation systems and the scalar multidimensional conservation law, Commun. Partial Differ. Equ., Volume 22 (1997), pp. 195–233 | DOI | Zbl

[25] Kružkov, S.N. First order quasilinear equations in several independent space variables, Math. USSR Sb., Volume 81 (1970), pp. 228–255 | Zbl

[26] Kuznetsov, N.N. Accuracy of some approximate methods for computing the weak solutions of a first-order quasilinear equation, Ž. Vyčisl. Mat. Mat. Fiz., Volume 16 (1976), pp. 1489–1502 (English transl. in USSR Comput. Math. Math. Phys., 16, 1976, 105–119) | Zbl

[27] Laforest, M. A posteriori error estimate for front-tracking: system of conservation laws, SIAM J. Math. Anal., Volume 35 (2004), pp. 1347–1370 | DOI | Zbl

[28] Liu, H.; Natalini, R. Long-time diffusive behavior of solutions to a hyperbolic relaxation system, Asymptot. Anal., Volume 25 (2001), pp. 21–38 | Zbl

[29] Liu, H.L.; Warnecke, G. Convergence rates for relaxation schemes approximating conservation laws, SIAM J. Numer. Anal., Volume 37 (2000) no. 4, pp. 1316–1337 | Zbl

[30] Mascia, C.; Zumbrun, K. Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., Volume 51 (2001) no. 4, pp. 773–904 | DOI | Zbl

[31] Natalini, R. Analysis of Systems of Conservation Laws, Monogr. Surv. Pure Appl. Math., Volume vol. 99 (1999) (Aachen, 1997) | Zbl

[32] Perthame, B.; Seguin, N.; Tournus, M. A simple derivation of BV bounds for inhomogeneous relaxation systems, Commun. Math. Sci., Volume 13 (2015), pp. 577–586 | DOI | Zbl

[33] Sabac, F. The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 34 (1997), pp. 2306–2318 | DOI | Zbl

[34] Serre, D. Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 2, pp. 169–192 | DOI | Numdam | Zbl

[35] Tadmor, E.; Tang, T. Pointwise error estimates for relaxation approximations to conservation laws, SIAM J. Math. Anal., Volume 32 (2000) no. 4, pp. 870–886 | DOI | Zbl

[36] Teng, Z.H. First-order L1 convergence for relaxation approximations to conservation laws, Commun. Pure Appl. Math., Volume 51 (1998) no. 8, pp. 857–895 | Zbl

[37] Rauch, J.; Reed, M. Jump discontinuities of semilinear, strictly hyperbolic systems in two variables: creation and propagation, Commun. Math. Phys., Volume 81 (1981), pp. 203–227 | DOI | Zbl

[38] Roder Tcheugoué Tébou, Louis; Zuazua, Enrique Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math., Volume 95 (2003), pp. 563–598 | Zbl

Cité par Sources :