A semilinear singular Sturm–Liouville equation involving measure data
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 4, pp. 965-1007.

Given α>0 and p>1, let μ be a bounded Radon measure on the interval (1,1). We are interested in the equation (|x|2αu)+|u|p1u=μ on (1,1) with boundary condition u(1)=u(1)=0. We establish some existence and uniqueness results. We examine the limiting behavior of three approximation schemes. The isolated singularity at 0 is also investigated.

DOI: 10.1016/j.anihpc.2015.03.001
Classification: 34B16, 34E99
Keywords: Singular Sturm–Liouville equation, Semilinear equation, Radon measure, Elliptic regularization, Classification of singularity
@article{AIHPC_2016__33_4_965_0,
     author = {Wang, Hui},
     title = {A semilinear singular {Sturm{\textendash}Liouville} equation involving measure data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {965--1007},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.001},
     mrnumber = {3519528},
     zbl = {1347.34040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/}
}
TY  - JOUR
AU  - Wang, Hui
TI  - A semilinear singular Sturm–Liouville equation involving measure data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 965
EP  - 1007
VL  - 33
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/
DO  - 10.1016/j.anihpc.2015.03.001
LA  - en
ID  - AIHPC_2016__33_4_965_0
ER  - 
%0 Journal Article
%A Wang, Hui
%T A semilinear singular Sturm–Liouville equation involving measure data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 965-1007
%V 33
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/
%R 10.1016/j.anihpc.2015.03.001
%G en
%F AIHPC_2016__33_4_965_0
Wang, Hui. A semilinear singular Sturm–Liouville equation involving measure data. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 4, pp. 965-1007. doi : 10.1016/j.anihpc.2015.03.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/

[1] Baras, P.; Pierre, M. Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185–206 | DOI | Numdam | MR | Zbl

[2] Bénilan, Ph.; Brezis, H. Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ., Volume 3 (2004), pp. 673–770 | MR | Zbl

[3] Bogachev, V.I. Measure Theory, vol. I, Springer-Verlag, Berlin, 2007 | MR | Zbl

[4] Brandolini, B.; Chiacchio, F.; Cîrstea, F.C.; Trombetti, C. Local behaviour of singular solutions for nonlinear elliptic equations in divergence form, Calc. Var. Partial Differ. Equ., Volume 48 (2013), pp. 367–393 | DOI | MR | Zbl

[5] Brezis, H. Contributions to Nonlinear Partial Differential Equations, Res. Notes in Math., Volume vol. 89, Pitman, Boston, MA (1983), pp. 82–89 (Madrid, 1981) | MR | Zbl

[6] Brezis, H.; Marcus, M.; Ponce, A.C. Nonlinear elliptic equations with measures revisited, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 55–109 | MR | Zbl

[7] Brezis, H.; Oswald, L. Singular solutions for some semilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 99 (1987), pp. 249–259 | DOI | MR | Zbl

[8] Brezis, H.; Peletier, L.A.; Terman, D. A very singular solution of the heat equation with absorption, Arch. Ration. Mech. Anal., Volume 95 (1986), pp. 185–209 | DOI | MR | Zbl

[9] Brezis, H.; Strauss, W. Semi-linear second-order elliptic equations in L1 , J. Math. Soc. Jpn., Volume 25 (1973), pp. 565–590 | DOI | MR | Zbl

[10] Brezis, H.; Véron, L. Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 75 (1980/81), pp. 1–6 | DOI | MR | Zbl

[11] Castro, H.; Wang, H. A singular Sturm–Liouville equation under homogeneous boundary conditions, J. Funct. Anal., Volume 261 (2011), pp. 1542–1590 | DOI | MR | Zbl

[12] Castro, H.; Wang, H. A singular Sturm–Liouville equation under non-homogeneous boundary conditions, Differ. Integral Equ., Volume 25 (2012), pp. 85–92 | MR | Zbl

[13] Chen, X.Y.; Matano, H.; Véron, L. Anisotropic singularities of nonlinear elliptic equations in R2 , J. Funct. Anal., Volume 83 (1989), pp. 50–97 | MR | Zbl

[14] Christensen, J.P.R. On some measures analogous to Haar measure, Math. Scand., Volume 26 (1970), pp. 103–106 | MR | Zbl

[15] Folland, G.B. Real Analysis. Modern Techniques and Their Applications, Pure Appl. Math., A Wiley–Interscience Publication, John Wiley & Sons, Inc., New York, 1999 | MR | Zbl

[16] Fowler, R.H. Further studies on Emden's and similar differential equations, Q. J. Math., Volume 2 (1931), pp. 259–288 | Zbl

[17] Gallouët, T.; Morel, J.M. Resolution of a semilinear equation in L1 , Proc. R. Soc. Edinb. A, Volume 96 (1984), pp. 275–288 | DOI | MR | Zbl

[18] de Figueiredo, D.G.; dos Santos, E.M.; Miyagaki, O.H. Sobolev spaces of symmetric functions and applications, J. Funct. Anal., Volume 261 (2011), pp. 3735–3770 | MR | Zbl

[19] Kato, T. Schrödinger operators with singular potentials, Isr. J. Math., Volume 13 (1972), pp. 135–148 | DOI | MR | Zbl

[20] Véron, L. Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., Volume 5 (1981), pp. 225–242 | DOI | MR | Zbl

[21] Véron, L. Singularities of Solutions of Second Order Quasilinear Equations, Pitman Res. Notes Math. Ser., vol. 353, Longman, Harlow, 1996 | MR | Zbl

[22] Véron, L. Elliptic equations involving measures, Stationary Partial Differential Equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 593–712 | MR | Zbl

[23] Wang, H. A singular Sturm–Liouville equation involving measure data, Commun. Contemp. Math., Volume 15 (2013) (1250047, 42 pages) | DOI | MR | Zbl

Cited by Sources: