Given and , let μ be a bounded Radon measure on the interval . We are interested in the equation on with boundary condition . We establish some existence and uniqueness results. We examine the limiting behavior of three approximation schemes. The isolated singularity at 0 is also investigated.
Keywords: Singular Sturm–Liouville equation, Semilinear equation, Radon measure, Elliptic regularization, Classification of singularity
@article{AIHPC_2016__33_4_965_0, author = {Wang, Hui}, title = {A semilinear singular {Sturm{\textendash}Liouville} equation involving measure data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {965--1007}, publisher = {Elsevier}, volume = {33}, number = {4}, year = {2016}, doi = {10.1016/j.anihpc.2015.03.001}, mrnumber = {3519528}, zbl = {1347.34040}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/} }
TY - JOUR AU - Wang, Hui TI - A semilinear singular Sturm–Liouville equation involving measure data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 965 EP - 1007 VL - 33 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/ DO - 10.1016/j.anihpc.2015.03.001 LA - en ID - AIHPC_2016__33_4_965_0 ER -
%0 Journal Article %A Wang, Hui %T A semilinear singular Sturm–Liouville equation involving measure data %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 965-1007 %V 33 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/ %R 10.1016/j.anihpc.2015.03.001 %G en %F AIHPC_2016__33_4_965_0
Wang, Hui. A semilinear singular Sturm–Liouville equation involving measure data. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 4, pp. 965-1007. doi : 10.1016/j.anihpc.2015.03.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.001/
[1] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185–206 | DOI | Numdam | MR | Zbl
[2] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ., Volume 3 (2004), pp. 673–770 | MR | Zbl
[3] Measure Theory, vol. I, Springer-Verlag, Berlin, 2007 | MR | Zbl
[4] Local behaviour of singular solutions for nonlinear elliptic equations in divergence form, Calc. Var. Partial Differ. Equ., Volume 48 (2013), pp. 367–393 | DOI | MR | Zbl
[5] Contributions to Nonlinear Partial Differential Equations, Res. Notes in Math., Volume vol. 89, Pitman, Boston, MA (1983), pp. 82–89 (Madrid, 1981) | MR | Zbl
[6] Nonlinear elliptic equations with measures revisited, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 55–109 | MR | Zbl
[7] Singular solutions for some semilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 99 (1987), pp. 249–259 | DOI | MR | Zbl
[8] A very singular solution of the heat equation with absorption, Arch. Ration. Mech. Anal., Volume 95 (1986), pp. 185–209 | DOI | MR | Zbl
[9] Semi-linear second-order elliptic equations in , J. Math. Soc. Jpn., Volume 25 (1973), pp. 565–590 | DOI | MR | Zbl
[10] Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 75 (1980/81), pp. 1–6 | DOI | MR | Zbl
[11] A singular Sturm–Liouville equation under homogeneous boundary conditions, J. Funct. Anal., Volume 261 (2011), pp. 1542–1590 | DOI | MR | Zbl
[12] A singular Sturm–Liouville equation under non-homogeneous boundary conditions, Differ. Integral Equ., Volume 25 (2012), pp. 85–92 | MR | Zbl
[13] Anisotropic singularities of nonlinear elliptic equations in , J. Funct. Anal., Volume 83 (1989), pp. 50–97 | MR | Zbl
[14] On some measures analogous to Haar measure, Math. Scand., Volume 26 (1970), pp. 103–106 | MR | Zbl
[15] Real Analysis. Modern Techniques and Their Applications, Pure Appl. Math., A Wiley–Interscience Publication, John Wiley & Sons, Inc., New York, 1999 | MR | Zbl
[16] Further studies on Emden's and similar differential equations, Q. J. Math., Volume 2 (1931), pp. 259–288 | Zbl
[17] Resolution of a semilinear equation in , Proc. R. Soc. Edinb. A, Volume 96 (1984), pp. 275–288 | DOI | MR | Zbl
[18] Sobolev spaces of symmetric functions and applications, J. Funct. Anal., Volume 261 (2011), pp. 3735–3770 | MR | Zbl
[19] Schrödinger operators with singular potentials, Isr. J. Math., Volume 13 (1972), pp. 135–148 | DOI | MR | Zbl
[20] Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., Volume 5 (1981), pp. 225–242 | DOI | MR | Zbl
[21] Singularities of Solutions of Second Order Quasilinear Equations, Pitman Res. Notes Math. Ser., vol. 353, Longman, Harlow, 1996 | MR | Zbl
[22] Elliptic equations involving measures, Stationary Partial Differential Equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 593–712 | MR | Zbl
[23] A singular Sturm–Liouville equation involving measure data, Commun. Contemp. Math., Volume 15 (2013) (1250047, 42 pages) | DOI | MR | Zbl
Cited by Sources: