We prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear (i.e. strongly nonlinear) autonomous Hamiltonian differentiable perturbations of KdV. This is the first result that extends KAM theory to quasi-linear autonomous and parameter independent PDEs. The core of the proof is to find an approximate inverse of the linearized operators at each approximate solution and to prove that it satisfies tame estimates in Sobolev spaces. A symplectic decoupling procedure reduces the problem to the one of inverting the linearized operator restricted to the normal directions. For this aim we use pseudo-differential operator techniques to transform such linear PDE into an equation with constant coefficients up to smoothing remainders. Then a linear KAM reducibility technique completely diagonalizes such operator. We introduce the “initial conditions” as parameters by performing a “weak” Birkhoff normal form analysis, which is well adapted for quasi-linear perturbations.
Mots-clés : KdV, KAM for PDEs, Quasi-linear PDEs, Nash–Moser theory, Quasi-periodic solutions
@article{AIHPC_2016__33_6_1589_0, author = {Baldi, Pietro and Berti, Massimiliano and Montalto, Riccardo}, title = {KAM for autonomous quasi-linear perturbations of {KdV}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1589--1638}, publisher = {Elsevier}, volume = {33}, number = {6}, year = {2016}, doi = {10.1016/j.anihpc.2015.07.003}, mrnumber = {3569244}, zbl = {1370.37134}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/} }
TY - JOUR AU - Baldi, Pietro AU - Berti, Massimiliano AU - Montalto, Riccardo TI - KAM for autonomous quasi-linear perturbations of KdV JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1589 EP - 1638 VL - 33 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/ DO - 10.1016/j.anihpc.2015.07.003 LA - en ID - AIHPC_2016__33_6_1589_0 ER -
%0 Journal Article %A Baldi, Pietro %A Berti, Massimiliano %A Montalto, Riccardo %T KAM for autonomous quasi-linear perturbations of KdV %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1589-1638 %V 33 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/ %R 10.1016/j.anihpc.2015.07.003 %G en %F AIHPC_2016__33_6_1589_0
Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo. KAM for autonomous quasi-linear perturbations of KdV. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1589-1638. doi : 10.1016/j.anihpc.2015.07.003. https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/
[1] Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 33–77 | DOI | Numdam | MR | Zbl
[2] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014), pp. 471–536 | DOI | MR | Zbl
[3] KAM for quasi-linear KdV, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 603–607 | DOI | MR | Zbl
[4] KAM theory for the Hamiltonian DNLW, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 2, pp. 301–373 | MR | Zbl
[5] KAM theory for the reversible derivative wave equation, Arch. Ration. Mech. Anal., Volume 212 (2014), pp. 905–955 | DOI | MR | Zbl
[6] Quasi-periodic solutions with Sobolev regularity of NLS on
[7] A Nash–Moser approach to KAM theory, Special Volume “Hamiltonian PDEs and Applications”, Fields Institute Communications, vol. 75, 2015 | DOI | MR
[8] M. Berti, P. Bolle, Quasi-periodic solutions for autonomous NLW on
[9] Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 1996, pp. 23–43 | DOI | MR | Zbl
[10] Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, 2005 | MR | Zbl
[11] Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, vol. 9, Société Mathématique de France, Paris, 2000 | MR | Zbl
[12] Newton's method and periodic solutions of nonlinear wave equation, Commun. Pure Appl. Math., Volume 46 (1993), pp. 1409–1498 | DOI | MR | Zbl
[13] KAM for non-linear Schrödinger equation, Ann. Math., Volume 172 (2010), pp. 371–435 | DOI | MR | Zbl
[14] An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., Volume 226 (2011), pp. 5361–5402 | DOI | MR | Zbl
[15] The KdV equation under periodic boundary conditions and its perturbations, Nonlinearity, Volume 27 (2014) no. 9, pp. R61–R88 | DOI | MR | Zbl
[16] Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., Volume 200 (2009) no. 940 | MR | Zbl
[17] Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 3, pp. 789–880 | DOI | MR | Zbl
[18] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367–478 | DOI | MR | Zbl
[19] Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., Volume 5 (1964), pp. 611–613 | MR | Zbl
[20] A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 629–673 | MR | Zbl
[21] KAM and KdV, Springer, 2003 | DOI | MR | Zbl
[22] Formation of singularities for wave equations including the nonlinear vibrating string, Commun. Pure Appl. Math., Volume 33 (1980), pp. 241–263 | DOI | MR | Zbl
[23] Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funkc. Anal. Prilozh., Volume 21 (1987) no. 3, pp. 22–37 (95) | MR | Zbl
[24] A KAM theorem for equations of the Korteweg–de Vries type, Rev. Math. Phys., Volume 10 (1998) no. 3, pp. 1–64 | MR | Zbl
[25] Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, vol. 19, Oxford University Press, 2000 | MR | Zbl
[26] Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., Volume 2 (1996) no. 143, pp. 149–179 | MR | Zbl
[27] A KAM-theorem for some nonlinear PDEs, Ann. Sc. Norm. Pisa, Volume 23 (1996), pp. 119–148 | Numdam | MR | Zbl
[28] Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269–296 | MR | Zbl
[29] A normal form for the Schrödinger equation with analytic non-linearities, Commun. Math. Phys., Volume 312 (2012), pp. 501–557 | DOI | MR | Zbl
[30] A KAM algorithm for the completely resonant nonlinear Schrödinger equation, Adv. Math., Volume 272 (2015), pp. 399–470 | DOI | MR | Zbl
[31] Pseudodifferential Operators and Nonlinear PDEs, Progress in Mathematics, Birkhäuser, 1991 | MR | Zbl
[32] W.M. Wang, Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint. | MR | Zbl
[33] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990), pp. 479–528 | DOI | MR | Zbl
[34] KAM tori for reversible partial differential equations, Nonlinearity, Volume 24 (2011), pp. 1189–1228 | DOI | MR | Zbl
[35] Generalized implicit function theorems with applications to some small divisors problems I, Commun. Pure Appl. Math., Volume 28 (1975), pp. 91–140 | MR | Zbl
[35] Generalized implicit function theorems with applications to some small divisors problems II, Commun. Pure Appl. Math., Volume 29 (1976), pp. 49–113 | DOI | MR | Zbl
- Paralinearization and extended lifespan for solutions of the α-SQG sharp front equation, Advances in Mathematics, Volume 460 (2025), p. 110034 | DOI:10.1016/j.aim.2024.110034
- Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities, Bulletin des Sciences Mathématiques, Volume 199 (2025), p. 103539 | DOI:10.1016/j.bulsci.2024.103539
- Reducibility for the linearized two-component intermediate long-wave equation, Journal of Functional Analysis, Volume 288 (2025) no. 7, p. 110832 | DOI:10.1016/j.jfa.2025.110832
- Boundary effects on the emergence of quasi-periodic solutions for Euler equations, Nonlinearity, Volume 38 (2025) no. 1 | DOI:10.1088/1361-6544/ad9ba7
- KAM for Vortex Patches (2024) | DOI:10.1134/s1560354724540013
- On the Fourier Analysis of the Einstein-Klein-Gordon System: Growth and Decay of the Fourier Constants, Annales Henri Poincaré, Volume 25 (2024) no. 6, pp. 3009-3079 | DOI:10.1007/s00023-023-01393-z
- Quasi-periodic solutions for a class of wave equation system, Applicable Analysis, Volume 103 (2024) no. 3, p. 562 | DOI:10.1080/00036811.2023.2200398
- Linearly stable KAM tori for one dimensional forced Kirchhoff equations with refined Töplitz-Lipschitz property, Journal of Differential Equations, Volume 387 (2024), pp. 324-377 | DOI:10.1016/j.jde.2023.12.041
- Long Time Dynamics of Quasi-linear Hamiltonian Klein–Gordon Equations on the Circle, Journal of Dynamics and Differential Equations (2024) | DOI:10.1007/s10884-024-10365-8
- Reducibility of the dispersive Camassa-Holm equation with unbounded perturbations, Journal of Functional Analysis, Volume 286 (2024) no. 6, p. 110321 | DOI:10.1016/j.jfa.2024.110321
- The existence of full dimensional KAM tori for nonlinear Schrödinger equation, Mathematische Annalen, Volume 390 (2024) no. 1, p. 671 | DOI:10.1007/s00208-023-02782-9
- Quasi-Periodic Traveling Waves on an Infinitely Deep Perfect Fluid Under Gravity, Memoirs of the American Mathematical Society, Volume 295 (2024) no. 1471 | DOI:10.1090/memo/1471
- Reducibility in a Certain Matrix Lie Algebra for Smooth Linear Quasi-periodic System, Qualitative Theory of Dynamical Systems, Volume 23 (2024) no. 2 | DOI:10.1007/s12346-023-00952-3
- Non-Resonant Conditions for the Klein – Gordon Equation on the Circle, Regular and Chaotic Dynamics, Volume 29 (2024) no. 4, p. 541 | DOI:10.1134/s1560354724040026
- Small amplitude weak almost periodic solutions for the 1d NLS, Duke Mathematical Journal, Volume 172 (2023) no. 14 | DOI:10.1215/00127094-2022-0089
- Response Solutions for KdV Equations with Liouvillean Frequency, Frontiers of Mathematics, Volume 18 (2023) no. 5, p. 1083 | DOI:10.1007/s11464-021-0099-2
- Time quasi-periodic vortex patches of Euler equation in the plane, Inventiones mathematicae, Volume 233 (2023) no. 3, pp. 1279-1391 | DOI:10.1007/s00222-023-01195-4
- A KAM algorithm for two-dimensional nonlinear Schrödinger equations with spatial variable, Journal of Differential Equations, Volume 364 (2023), pp. 1-52 | DOI:10.1016/j.jde.2023.03.036
- Reducibility of a class of operators induced by the dispersive third order Benjamin-Ono equation, Journal of Mathematical Physics, Volume 64 (2023) no. 12 | DOI:10.1063/5.0172743
- Quasi-Periodic Breathers in Granular Chains with Hertzian Contact Potential, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09950-w
- Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 4 | DOI:10.1007/s12346-023-00840-w
- Quasi-periodic solutions for the generalized Benjamin-Bona-Mahony equation, Communications in Nonlinear Science and Numerical Simulation, Volume 105 (2022) | DOI:10.1016/j.cnsns.2021.106091
- Invariant tori for the derivative nonlinear Schrödinger equation with nonlinear term depending on spatial variable, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 9, p. 4555 | DOI:10.3934/dcds.2022064
- Linearly stable KAM tori for higher dimensional Kirchhoff equations, Journal of Differential Equations, Volume 315 (2022), pp. 222-253 | DOI:10.1016/j.jde.2022.01.045
- Quasi-periodic solutions for a Schrödinger equation under periodic boundary conditions with given potential, Journal of Differential Equations, Volume 326 (2022), pp. 313-343 | DOI:10.1016/j.jde.2022.04.021
- Reducible KAM tori for two-dimensional nonlinear Schrödinger equations with explicit dependence on the spatial variable, Journal of Functional Analysis, Volume 282 (2022) no. 10, p. 109430 | DOI:10.1016/j.jfa.2022.109430
- Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems, Perturbation Theory (2022), p. 247 | DOI:10.1007/978-1-0716-2621-4_302
- Perturbation Theory for Water Waves, Perturbation Theory (2022), p. 541 | DOI:10.1007/978-1-0716-2621-4_760
- Quasi-periodic incompressible Euler flows in 3D, Advances in Mathematics, Volume 384 (2021), p. 107730 | DOI:10.1016/j.aim.2021.107730
- Almost periodic invariant tori for the NLS on the circle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 3, pp. 711-758 | DOI:10.1016/j.anihpc.2020.09.003
- The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 3, pp. 759-786 | DOI:10.1016/j.anihpc.2020.09.006
- Large KAM Tori for Quasi-linear Perturbations of KdV, Archive for Rational Mechanics and Analysis, Volume 239 (2021) no. 3, pp. 1395-1500 | DOI:10.1007/s00205-020-01596-2
- Chaotic-Like Transfers of Energy in Hamiltonian PDEs, Communications in Mathematical Physics, Volume 384 (2021) no. 2, pp. 1227-1290 | DOI:10.1007/s00220-021-03956-9
- On the Stability of Periodic Multi-Solitons of the KdV Equation, Communications in Mathematical Physics, Volume 385 (2021) no. 3, pp. 1871-1956 | DOI:10.1007/s00220-021-04089-9
- KAMTheorem with Normal Frequencies of FiniteLimit‐Pointsfor Some Shallow Water Equations, Communications on Pure and Applied Mathematics, Volume 74 (2021) no. 6, p. 1193 | DOI:10.1002/cpa.21931
- Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 11, p. 5057 | DOI:10.3934/dcds.2021068
- Perturbation Theory for Water Waves, Encyclopedia of Complexity and Systems Science (2021), p. 1 | DOI:10.1007/978-3-642-27737-5_760-1
- A KAM Theorem for the Hamiltonian with Finite Zero Normal Frequencies and Its Applications (In Memory of Professor Walter Craig), Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 3, pp. 1427-1474 | DOI:10.1007/s10884-021-09972-6
- On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range, Nonlinear Analysis, Volume 202 (2021), p. 112120 | DOI:10.1016/j.na.2020.112120
- Linear Schrödinger Equation with an Almost Periodic Potential, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 1, p. 386 | DOI:10.1137/20m1320742
- Normal Form Coordinates for the KdV Equation Having Expansions in Terms of Pseudodifferential Operators, Communications in Mathematical Physics, Volume 375 (2020) no. 1, pp. 833-913 | DOI:10.1007/s00220-019-03498-1
- Reducible KAM Tori for the Degasperis-Procesi Equation, Communications in Mathematical Physics, Volume 377 (2020) no. 3, pp. 1681-1759 | DOI:10.1007/s00220-020-03788-z
- ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION, Journal of Applied Analysis Computation, Volume 10 (2020) no. 2, p. 771 | DOI:10.11948/20190292
- Periodic and Quasi-Periodic Solutions for Reversible Unbounded Perturbations of Linear Schrödinger Equations, Journal of Dynamics and Differential Equations, Volume 32 (2020) no. 1, pp. 117-161 | DOI:10.1007/s10884-018-9722-7
- On time periodic solutions to the conformal cubic wave equation on the Einstein cylinder, Journal of Mathematical Physics, Volume 61 (2020) no. 11 | DOI:10.1063/5.0026015
- Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential, Journal of Mathematical Physics, Volume 61 (2020) no. 7 | DOI:10.1063/5.0006536
- On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, Volume 33 (2020) no. 1, pp. 196-223 | DOI:10.1088/1361-6544/ab4c7b
- Periodic solutions of the generalized KdV equation, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 5, p. 2103 | DOI:10.1090/proc/14958
- Reducibility, Lyapunov Exponent, Pure Point Spectra Property for Quasi-periodic Wave Operator, Taiwanese Journal of Mathematics, Volume 24 (2020) no. 2 | DOI:10.11650/tjm/190505
- Quasi-periodic traveling waves on an infinitely deep fluid under gravity, arXiv (2020) | DOI:10.48550/arxiv.2005.08280 | arXiv:2005.08280
- Reducibility of Non-Resonant Transport Equation on Td with Unbounded Perturbations, Annales Henri Poincaré, Volume 20 (2019) no. 6, pp. 1893-1929 | DOI:10.1007/s00023-019-00795-2
- Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 1, pp. 119-164 | DOI:10.1016/j.anihpc.2018.04.003
- Invariant tori for the Schrödinger equation in the Heisenberg Ferromagnetic chain, Applicable Analysis, Volume 98 (2019) no. 13, p. 2440 | DOI:10.1080/00036811.2018.1460817
- Long-time existence for multi-dimensional periodic water waves, Geometric and Functional Analysis, Volume 29 (2019) no. 3, p. 811 | DOI:10.1007/s00039-019-00490-8
- Reducibility for wave equations of finitely smooth potential with periodic boundary conditions, Journal of Differential Equations, Volume 266 (2019) no. 5, pp. 2762-2804 | DOI:10.1016/j.jde.2018.08.044
- Growth of Sobolev norms for time dependent periodic Schrödinger equations with sublinear dispersion, Journal of Differential Equations, Volume 266 (2019) no. 8, pp. 4953-4996 | DOI:10.1016/j.jde.2018.10.017
- Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrödinger equation, Journal of Differential Equations, Volume 267 (2019) no. 2, pp. 1322-1375 | DOI:10.1016/j.jde.2019.02.010
- Reducibility of first order linear operators on tori via Moser's theorem, Journal of Functional Analysis, Volume 276 (2019) no. 3, p. 932 | DOI:10.1016/j.jfa.2018.10.009
- Space of Quasi-Periodic Limit Functions and Its Applications, Mathematics, Volume 7 (2019) no. 11, p. 1132 | DOI:10.3390/math7111132
- Finite dimensional invariant KAM tori for tame vector fields, Transactions of the American Mathematical Society, Volume 372 (2019) no. 3, p. 1913 | DOI:10.1090/tran/7699
- Quasi-periodic solutions of nonlinear wave equations on the d-dimensional torus, arXiv (2019) | DOI:10.48550/arxiv.1906.06767 | arXiv:1906.06767
- On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion, Asymptotic Analysis, Volume 108 (2018) no. 1-2, p. 85 | DOI:10.3233/asy-181470
- Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems, Encyclopedia of Complexity and Systems Science (2018), p. 1 | DOI:10.1007/978-3-642-27737-5_302-3
- Time quasi-periodic gravity water waves in finite depth, Inventiones mathematicae, Volume 214 (2018) no. 2, pp. 739-911 | DOI:10.1007/s00222-018-0812-2
- Controllability of quasi-linear Hamiltonian NLS equations, Journal of Differential Equations, Volume 264 (2018) no. 3, pp. 1786-1840 | DOI:10.1016/j.jde.2017.10.009
- The stability of full dimensional KAM tori for nonlinear Schrödinger equation, Journal of Differential Equations, Volume 264 (2018) no. 7, pp. 4504-4563 | DOI:10.1016/j.jde.2017.12.013
- Quasi-periodic solutions for generalized Kaup system with quasi-periodic forcing, Journal of Mathematical Physics, Volume 59 (2018) no. 11 | DOI:10.1063/1.4990857
- Quasi-periodic solutions for the forced Kirchhoff equation on ^d, Nonlinearity, Volume 31 (2018) no. 11, p. 5075 | DOI:10.1088/1361-6544/aad6fe
- Long time existence for fully nonlinear NLS with small Cauchy data on the circle, arXiv (2018) | DOI:10.48550/arxiv.1806.03437 | arXiv:1806.03437
- Exact controllability for quasilinear perturbations of KdV, Analysis PDE, Volume 10 (2017) no. 2, p. 281 | DOI:10.2140/apde.2017.10.281
- A Reducibility Result for a Class of Linear Wave Equations on
, International Mathematics Research Notices, Volume 2019 (2017) no. 6, p. 1788 | DOI:10.1093/imrn/rnx167 - Quasi-periodic solutions for quasi-linear generalized KdV equations, Journal of Differential Equations, Volume 262 (2017) no. 10, pp. 5052-5132 | DOI:10.1016/j.jde.2017.01.021
- Real Analytic Quasi-Periodic Solutions with More Diophantine Frequencies for Perturbed KdV Equations, Journal of Dynamics and Differential Equations, Volume 29 (2017) no. 3, pp. 1103-1130 | DOI:10.1007/s10884-016-9529-3
- Quasi-periodic water waves, Journal of Fixed Point Theory and Applications, Volume 19 (2017) no. 1, p. 129 | DOI:10.1007/s11784-016-0375-z
- A note on KAM for gravity-capillary water waves, Journées équations aux dérivées partielles (2017), p. 1 | DOI:10.5802/jedp.648
- Quasi-periodic solutions of forced Kirchhoff equation, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 1 | DOI:10.1007/s00030-017-0432-3
- Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, arXiv (2017) | DOI:10.48550/arxiv.1711.02388 | arXiv:1711.02388
- KAM for PDEs, Bollettino dell'Unione Matematica Italiana, Volume 9 (2016) no. 2, p. 115 | DOI:10.1007/s40574-016-0067-z
- KAM for autonomous quasi-linear perturbations of mKdV, Bollettino dell'Unione Matematica Italiana, Volume 9 (2016) no. 2, p. 143 | DOI:10.1007/s40574-016-0065-1
- KAM for quasi-linear forced hamiltonian NLS, arXiv (2016) | DOI:10.48550/arxiv.1602.01341 | arXiv:1602.01341
- Large KAM tori for perturbations of the dNLS equation, arXiv (2016) | DOI:10.48550/arxiv.1603.09252 | arXiv:1603.09252
- Canonical coordinates with tame estimates for the defocusing NLS equation on the circle, arXiv (2016) | DOI:10.48550/arxiv.1607.04454 | arXiv:1607.04454
Cité par 82 documents. Sources : Crossref, NASA ADS