KAM for autonomous quasi-linear perturbations of KdV
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1589-1638.

We prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear (i.e. strongly nonlinear) autonomous Hamiltonian differentiable perturbations of KdV. This is the first result that extends KAM theory to quasi-linear autonomous and parameter independent PDEs. The core of the proof is to find an approximate inverse of the linearized operators at each approximate solution and to prove that it satisfies tame estimates in Sobolev spaces. A symplectic decoupling procedure reduces the problem to the one of inverting the linearized operator restricted to the normal directions. For this aim we use pseudo-differential operator techniques to transform such linear PDE into an equation with constant coefficients up to smoothing remainders. Then a linear KAM reducibility technique completely diagonalizes such operator. We introduce the “initial conditions” as parameters by performing a “weak” Birkhoff normal form analysis, which is well adapted for quasi-linear perturbations.

DOI : 10.1016/j.anihpc.2015.07.003
Classification : 37K55, 35Q53
Mots-clés : KdV, KAM for PDEs, Quasi-linear PDEs, Nash–Moser theory, Quasi-periodic solutions
@article{AIHPC_2016__33_6_1589_0,
     author = {Baldi, Pietro and Berti, Massimiliano and Montalto, Riccardo},
     title = {KAM for autonomous quasi-linear perturbations of {KdV}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1589--1638},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.07.003},
     mrnumber = {3569244},
     zbl = {1370.37134},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/}
}
TY  - JOUR
AU  - Baldi, Pietro
AU  - Berti, Massimiliano
AU  - Montalto, Riccardo
TI  - KAM for autonomous quasi-linear perturbations of KdV
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1589
EP  - 1638
VL  - 33
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/
DO  - 10.1016/j.anihpc.2015.07.003
LA  - en
ID  - AIHPC_2016__33_6_1589_0
ER  - 
%0 Journal Article
%A Baldi, Pietro
%A Berti, Massimiliano
%A Montalto, Riccardo
%T KAM for autonomous quasi-linear perturbations of KdV
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1589-1638
%V 33
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/
%R 10.1016/j.anihpc.2015.07.003
%G en
%F AIHPC_2016__33_6_1589_0
Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo. KAM for autonomous quasi-linear perturbations of KdV. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1589-1638. doi : 10.1016/j.anihpc.2015.07.003. https://www.numdam.org/articles/10.1016/j.anihpc.2015.07.003/

[1] Baldi, P. Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 33–77 | DOI | Numdam | MR | Zbl

[2] Baldi, P.; Berti, M.; Montalto, R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014), pp. 471–536 | DOI | MR | Zbl

[3] Baldi, P.; Berti, M.; Montalto, R. KAM for quasi-linear KdV, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 603–607 | DOI | MR | Zbl

[4] Berti, M.; Biasco, P.; Procesi, M. KAM theory for the Hamiltonian DNLW, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 2, pp. 301–373 | MR | Zbl

[5] Berti, M.; Biasco, P.; Procesi, M. KAM theory for the reversible derivative wave equation, Arch. Ration. Mech. Anal., Volume 212 (2014), pp. 905–955 | DOI | MR | Zbl

[6] Berti, M.; Bolle, P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential, Eur. J. Math., Volume 15 (2013), pp. 229–286 | MR | Zbl

[7] Berti, M.; Bolle, P.; Guyenne, P.; Nicholls, D.; Sulem, C. A Nash–Moser approach to KAM theory, Special Volume “Hamiltonian PDEs and Applications”, Fields Institute Communications, vol. 75, 2015 | DOI | MR

[8] M. Berti, P. Bolle, Quasi-periodic solutions for autonomous NLW on Td with a multiplicative potential, in preparation.

[9] Bourgain, J. Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 1996, pp. 23–43 | DOI | MR | Zbl

[10] Bourgain, J. Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, 2005 | MR | Zbl

[11] Craig, W. Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, vol. 9, Société Mathématique de France, Paris, 2000 | MR | Zbl

[12] Craig, W.; Wayne, C.E. Newton's method and periodic solutions of nonlinear wave equation, Commun. Pure Appl. Math., Volume 46 (1993), pp. 1409–1498 | DOI | MR | Zbl

[13] Eliasson, L.H.; Kuksin, S. KAM for non-linear Schrödinger equation, Ann. Math., Volume 172 (2010), pp. 371–435 | DOI | MR | Zbl

[14] Geng, J.; Xu, X.; You, J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., Volume 226 (2011), pp. 5361–5402 | DOI | MR | Zbl

[15] Guan, H.; Kuksin, S. The KdV equation under periodic boundary conditions and its perturbations, Nonlinearity, Volume 27 (2014) no. 9, pp. R61–R88 | DOI | MR | Zbl

[16] Iooss, G.; Plotnikov, P.I. Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., Volume 200 (2009) no. 940 | MR | Zbl

[17] Iooss, G.; Plotnikov, P.I. Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 3, pp. 789–880 | DOI | MR | Zbl

[18] Iooss, G.; Plotnikov, P.I.; Toland, J.F. Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367–478 | DOI | MR | Zbl

[19] Lax, P. Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., Volume 5 (1964), pp. 611–613 | MR | Zbl

[20] Liu, J.; Yuan, X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 629–673 | MR | Zbl

[21] Kappeler, T.; Pöschel, J. KAM and KdV, Springer, 2003 | DOI | MR | Zbl

[22] Klainerman, S.; Majda, A. Formation of singularities for wave equations including the nonlinear vibrating string, Commun. Pure Appl. Math., Volume 33 (1980), pp. 241–263 | DOI | MR | Zbl

[23] Kuksin, S. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funkc. Anal. Prilozh., Volume 21 (1987) no. 3, pp. 22–37 (95) | MR | Zbl

[24] Kuksin, S. A KAM theorem for equations of the Korteweg–de Vries type, Rev. Math. Phys., Volume 10 (1998) no. 3, pp. 1–64 | MR | Zbl

[25] Kuksin, S. Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, vol. 19, Oxford University Press, 2000 | MR | Zbl

[26] Kuksin, S.; Pöschel, J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., Volume 2 (1996) no. 143, pp. 149–179 | MR | Zbl

[27] Pöschel, J. A KAM-theorem for some nonlinear PDEs, Ann. Sc. Norm. Pisa, Volume 23 (1996), pp. 119–148 | Numdam | MR | Zbl

[28] Pöschel, J. Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269–296 | MR | Zbl

[29] Procesi, M.; Procesi, C. A normal form for the Schrödinger equation with analytic non-linearities, Commun. Math. Phys., Volume 312 (2012), pp. 501–557 | DOI | MR | Zbl

[30] Procesi, C.; Procesi, M. A KAM algorithm for the completely resonant nonlinear Schrödinger equation, Adv. Math., Volume 272 (2015), pp. 399–470 | DOI | MR | Zbl

[31] Taylor, M.E. Pseudodifferential Operators and Nonlinear PDEs, Progress in Mathematics, Birkhäuser, 1991 | MR | Zbl

[32] W.M. Wang, Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint. | MR | Zbl

[33] Wayne, E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990), pp. 479–528 | DOI | MR | Zbl

[34] Zhang, J.; Gao, M.; Yuan, X. KAM tori for reversible partial differential equations, Nonlinearity, Volume 24 (2011), pp. 1189–1228 | DOI | MR | Zbl

[35] Zehnder, E. Generalized implicit function theorems with applications to some small divisors problems I, Commun. Pure Appl. Math., Volume 28 (1975), pp. 91–140 | MR | Zbl

[35] Zehnder, E. Generalized implicit function theorems with applications to some small divisors problems II, Commun. Pure Appl. Math., Volume 29 (1976), pp. 49–113 | DOI | MR | Zbl

  • Berti, Massimiliano; Cuccagna, Scipio; Gancedo, Francisco; Scrobogna, Stefano Paralinearization and extended lifespan for solutions of the α-SQG sharp front equation, Advances in Mathematics, Volume 460 (2025), p. 110034 | DOI:10.1016/j.aim.2024.110034
  • Tuan, Nguyen Huy; Nghia, Bui Dai; Tuan, Nguyen Anh Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities, Bulletin des Sciences Mathématiques, Volume 199 (2025), p. 103539 | DOI:10.1016/j.bulsci.2024.103539
  • Fu, Ying; Qu, Changzheng; Wu, Xiaoping Reducibility for the linearized two-component intermediate long-wave equation, Journal of Functional Analysis, Volume 288 (2025) no. 7, p. 110832 | DOI:10.1016/j.jfa.2025.110832
  • Hassainia, Zineb; Roulley, Emeric Boundary effects on the emergence of quasi-periodic solutions for Euler equations, Nonlinearity, Volume 38 (2025) no. 1 | DOI:10.1088/1361-6544/ad9ba7
  • Berti, Massimiliano KAM for Vortex Patches (2024) | DOI:10.1134/s1560354724540013
  • Chatzikaleas, Athanasios On the Fourier Analysis of the Einstein-Klein-Gordon System: Growth and Decay of the Fourier Constants, Annales Henri Poincaré, Volume 25 (2024) no. 6, pp. 3009-3079 | DOI:10.1007/s00023-023-01393-z
  • Shi, Yanling Quasi-periodic solutions for a class of wave equation system, Applicable Analysis, Volume 103 (2024) no. 3, p. 562 | DOI:10.1080/00036811.2023.2200398
  • Chen, Yin; Geng, Jiansheng Linearly stable KAM tori for one dimensional forced Kirchhoff equations with refined Töplitz-Lipschitz property, Journal of Differential Equations, Volume 387 (2024), pp. 324-377 | DOI:10.1016/j.jde.2023.12.041
  • Feola, Roberto; Giuliani, Filippo Long Time Dynamics of Quasi-linear Hamiltonian Klein–Gordon Equations on the Circle, Journal of Dynamics and Differential Equations (2024) | DOI:10.1007/s10884-024-10365-8
  • Wu, Xiaoping; Fu, Ying; Qu, Changzheng Reducibility of the dispersive Camassa-Holm equation with unbounded perturbations, Journal of Functional Analysis, Volume 286 (2024) no. 6, p. 110321 | DOI:10.1016/j.jfa.2024.110321
  • Cong, Hongzi The existence of full dimensional KAM tori for nonlinear Schrödinger equation, Mathematische Annalen, Volume 390 (2024) no. 1, p. 671 | DOI:10.1007/s00208-023-02782-9
  • Feola, Roberto; Giuliani, Filippo Quasi-Periodic Traveling Waves on an Infinitely Deep Perfect Fluid Under Gravity, Memoirs of the American Mathematical Society, Volume 295 (2024) no. 1471 | DOI:10.1090/memo/1471
  • Zhang, Yuan; Si, Wen Reducibility in a Certain Matrix Lie Algebra for Smooth Linear Quasi-periodic System, Qualitative Theory of Dynamical Systems, Volume 23 (2024) no. 2 | DOI:10.1007/s12346-023-00952-3
  • Feola, Roberto; Massetti, Jessica Elisa Non-Resonant Conditions for the Klein – Gordon Equation on the Circle, Regular and Chaotic Dynamics, Volume 29 (2024) no. 4, p. 541 | DOI:10.1134/s1560354724040026
  • Biasco, Luca; Massetti, Jessica Elisa; Procesi, Michela Small amplitude weak almost periodic solutions for the 1d NLS, Duke Mathematical Journal, Volume 172 (2023) no. 14 | DOI:10.1215/00127094-2022-0089
  • Chang, Ningning; Geng, Jiansheng; Sun, Yingnan Response Solutions for KdV Equations with Liouvillean Frequency, Frontiers of Mathematics, Volume 18 (2023) no. 5, p. 1083 | DOI:10.1007/s11464-021-0099-2
  • Berti, Massimiliano; Hassainia, Zineb; Masmoudi, Nader Time quasi-periodic vortex patches of Euler equation in the plane, Inventiones mathematicae, Volume 233 (2023) no. 3, pp. 1279-1391 | DOI:10.1007/s00222-023-01195-4
  • Xue, Shuaishuai A KAM algorithm for two-dimensional nonlinear Schrödinger equations with spatial variable, Journal of Differential Equations, Volume 364 (2023), pp. 1-52 | DOI:10.1016/j.jde.2023.03.036
  • Wu, Xiaoping; Fu, Ying; Qu, Changzheng Reducibility of a class of operators induced by the dispersive third order Benjamin-Ono equation, Journal of Mathematical Physics, Volume 64 (2023) no. 12 | DOI:10.1063/5.0172743
  • Ge, Chuanfang; Geng, Jiansheng; Yi, Yingfei Quasi-Periodic Breathers in Granular Chains with Hertzian Contact Potential, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09950-w
  • Shi, Yanling; Xu, Junxiang Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 4 | DOI:10.1007/s12346-023-00840-w
  • Shi, Guanghua; Yan, Dongfeng Quasi-periodic solutions for the generalized Benjamin-Bona-Mahony equation, Communications in Nonlinear Science and Numerical Simulation, Volume 105 (2022) | DOI:10.1016/j.cnsns.2021.106091
  • Lou, Zhaowei; Si, Jianguo; Wang, Shimin Invariant tori for the derivative nonlinear Schrödinger equation with nonlinear term depending on spatial variable, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 9, p. 4555 | DOI:10.3934/dcds.2022064
  • Chen, Yin; Geng, Jiansheng Linearly stable KAM tori for higher dimensional Kirchhoff equations, Journal of Differential Equations, Volume 315 (2022), pp. 222-253 | DOI:10.1016/j.jde.2022.01.045
  • Mi, Lufang; Li, Jing Quasi-periodic solutions for a Schrödinger equation under periodic boundary conditions with given potential, Journal of Differential Equations, Volume 326 (2022), pp. 313-343 | DOI:10.1016/j.jde.2022.04.021
  • Geng, Jiansheng; Xue, Shuaishuai Reducible KAM tori for two-dimensional nonlinear Schrödinger equations with explicit dependence on the spatial variable, Journal of Functional Analysis, Volume 282 (2022) no. 10, p. 109430 | DOI:10.1016/j.jfa.2022.109430
  • Chierchia, Luigi; Procesi, Michela Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems, Perturbation Theory (2022), p. 247 | DOI:10.1007/978-1-0716-2621-4_302
  • Montalto, Riccardo Perturbation Theory for Water Waves, Perturbation Theory (2022), p. 541 | DOI:10.1007/978-1-0716-2621-4_760
  • Baldi, Pietro; Montalto, Riccardo Quasi-periodic incompressible Euler flows in 3D, Advances in Mathematics, Volume 384 (2021), p. 107730 | DOI:10.1016/j.aim.2021.107730
  • Biasco, Luca; Massetti, Jessica Elisa; Procesi, Michela Almost periodic invariant tori for the NLS on the circle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 3, pp. 711-758 | DOI:10.1016/j.anihpc.2020.09.003
  • Cong, Hongzi; Yuan, Xiaoping The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 3, pp. 759-786 | DOI:10.1016/j.anihpc.2020.09.006
  • Berti, Massimiliano; Kappeler, Thomas; Montalto, Riccardo Large KAM Tori for Quasi-linear Perturbations of KdV, Archive for Rational Mechanics and Analysis, Volume 239 (2021) no. 3, pp. 1395-1500 | DOI:10.1007/s00205-020-01596-2
  • Giuliani, Filippo; Guardia, Marcel; Martin, Pau; Pasquali, Stefano Chaotic-Like Transfers of Energy in Hamiltonian PDEs, Communications in Mathematical Physics, Volume 384 (2021) no. 2, pp. 1227-1290 | DOI:10.1007/s00220-021-03956-9
  • Kappeler, Thomas; Montalto, Riccardo On the Stability of Periodic Multi-Solitons of the KdV Equation, Communications in Mathematical Physics, Volume 385 (2021) no. 3, pp. 1871-1956 | DOI:10.1007/s00220-021-04089-9
  • Yuan, Xiaoping KAMTheorem with Normal Frequencies of FiniteLimit‐Pointsfor Some Shallow Water Equations, Communications on Pure and Applied Mathematics, Volume 74 (2021) no. 6, p. 1193 | DOI:10.1002/cpa.21931
  • Giuliani, Filippo Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 11, p. 5057 | DOI:10.3934/dcds.2021068
  • Montalto, Riccardo Perturbation Theory for Water Waves, Encyclopedia of Complexity and Systems Science (2021), p. 1 | DOI:10.1007/978-3-642-27737-5_760-1
  • Wu, Yuan; Yuan, Xiaoping A KAM Theorem for the Hamiltonian with Finite Zero Normal Frequencies and Its Applications (In Memory of Professor Walter Craig), Journal of Dynamics and Differential Equations, Volume 33 (2021) no. 3, pp. 1427-1474 | DOI:10.1007/s10884-021-09972-6
  • Wu, Yuan; Yuan, Xiaoping On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range, Nonlinear Analysis, Volume 202 (2021), p. 112120 | DOI:10.1016/j.na.2020.112120
  • Montalto, Riccardo; Procesi, Michela Linear Schrödinger Equation with an Almost Periodic Potential, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 1, p. 386 | DOI:10.1137/20m1320742
  • Kappeler, Thomas; Montalto, Riccardo Normal Form Coordinates for the KdV Equation Having Expansions in Terms of Pseudodifferential Operators, Communications in Mathematical Physics, Volume 375 (2020) no. 1, pp. 833-913 | DOI:10.1007/s00220-019-03498-1
  • Feola, Roberto; Giuliani, Filippo; Procesi, Michela Reducible KAM Tori for the Degasperis-Procesi Equation, Communications in Mathematical Physics, Volume 377 (2020) no. 3, pp. 1681-1759 | DOI:10.1007/s00220-020-03788-z
  • Wu, Yuan; Yuan, Xiaoping ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION, Journal of Applied Analysis Computation, Volume 10 (2020) no. 2, p. 771 | DOI:10.11948/20190292
  • Lou, Zhaowei; Si, Jianguo Periodic and Quasi-Periodic Solutions for Reversible Unbounded Perturbations of Linear Schrödinger Equations, Journal of Dynamics and Differential Equations, Volume 32 (2020) no. 1, pp. 117-161 | DOI:10.1007/s10884-018-9722-7
  • Chatzikaleas, Athanasios On time periodic solutions to the conformal cubic wave equation on the Einstein cylinder, Journal of Mathematical Physics, Volume 61 (2020) no. 11 | DOI:10.1063/5.0026015
  • Feola, Roberto; Grébert, Benoît; Nguyen, Trung Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential, Journal of Mathematical Physics, Volume 61 (2020) no. 7 | DOI:10.1063/5.0006536
  • Baldi, Pietro; Haus, Emanuele On the existence time for the Kirchhoff equation with periodic boundary conditions, Nonlinearity, Volume 33 (2020) no. 1, pp. 196-223 | DOI:10.1088/1361-6544/ab4c7b
  • Sun, Yingnan Periodic solutions of the generalized KdV equation, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 5, p. 2103 | DOI:10.1090/proc/14958
  • Li, Jing Reducibility, Lyapunov Exponent, Pure Point Spectra Property for Quasi-periodic Wave Operator, Taiwanese Journal of Mathematics, Volume 24 (2020) no. 2 | DOI:10.11650/tjm/190505
  • Feola, Roberto; Giuliani, Filippo Quasi-periodic traveling waves on an infinitely deep fluid under gravity, arXiv (2020) | DOI:10.48550/arxiv.2005.08280 | arXiv:2005.08280
  • Bambusi, Dario; Langella, Beatrice; Montalto, Riccardo Reducibility of Non-Resonant Transport Equation on Td with Unbounded Perturbations, Annales Henri Poincaré, Volume 20 (2019) no. 6, pp. 1893-1929 | DOI:10.1007/s00023-019-00795-2
  • Feola, R.; Iandoli, F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 1, pp. 119-164 | DOI:10.1016/j.anihpc.2018.04.003
  • Mi, Lufang; Cui, Wenyan Invariant tori for the Schrödinger equation in the Heisenberg Ferromagnetic chain, Applicable Analysis, Volume 98 (2019) no. 13, p. 2440 | DOI:10.1080/00036811.2018.1460817
  • Ionescu, A. D.; Pusateri, F. Long-time existence for multi-dimensional periodic water waves, Geometric and Functional Analysis, Volume 29 (2019) no. 3, p. 811 | DOI:10.1007/s00039-019-00490-8
  • Sun, Yingte; Li, Jing; Xie, Bing Reducibility for wave equations of finitely smooth potential with periodic boundary conditions, Journal of Differential Equations, Volume 266 (2019) no. 5, pp. 2762-2804 | DOI:10.1016/j.jde.2018.08.044
  • Montalto, Riccardo Growth of Sobolev norms for time dependent periodic Schrödinger equations with sublinear dispersion, Journal of Differential Equations, Volume 266 (2019) no. 8, pp. 4953-4996 | DOI:10.1016/j.jde.2018.10.017
  • Gao, Meina; Liu, Jianjun Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrödinger equation, Journal of Differential Equations, Volume 267 (2019) no. 2, pp. 1322-1375 | DOI:10.1016/j.jde.2019.02.010
  • Feola, R.; Giuliani, F.; Montalto, R.; Procesi, M. Reducibility of first order linear operators on tori via Moser's theorem, Journal of Functional Analysis, Volume 276 (2019) no. 3, p. 932 | DOI:10.1016/j.jfa.2018.10.009
  • Xie, Rui; Xia, Zhinan; Liu, Junwei Space of Quasi-Periodic Limit Functions and Its Applications, Mathematics, Volume 7 (2019) no. 11, p. 1132 | DOI:10.3390/math7111132
  • Corsi, Livia; Feola, Roberto; Procesi, Michela Finite dimensional invariant KAM tori for tame vector fields, Transactions of the American Mathematical Society, Volume 372 (2019) no. 3, p. 1913 | DOI:10.1090/tran/7699
  • Berti, Massimiliano; Bolle, Philippe Quasi-periodic solutions of nonlinear wave equations on the d-dimensional torus, arXiv (2019) | DOI:10.48550/arxiv.1906.06767 | arXiv:1906.06767
  • Montalto, Riccardo On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion, Asymptotic Analysis, Volume 108 (2018) no. 1-2, p. 85 | DOI:10.3233/asy-181470
  • Chierchia, Luigi; Procesi, Michela Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems, Encyclopedia of Complexity and Systems Science (2018), p. 1 | DOI:10.1007/978-3-642-27737-5_302-3
  • Baldi, Pietro; Berti, Massimiliano; Haus, Emanuele; Montalto, Riccardo Time quasi-periodic gravity water waves in finite depth, Inventiones mathematicae, Volume 214 (2018) no. 2, pp. 739-911 | DOI:10.1007/s00222-018-0812-2
  • Baldi, Pietro; Haus, Emanuele; Montalto, Riccardo Controllability of quasi-linear Hamiltonian NLS equations, Journal of Differential Equations, Volume 264 (2018) no. 3, pp. 1786-1840 | DOI:10.1016/j.jde.2017.10.009
  • Cong, Hongzi; Liu, Jianjun; Shi, Yunfeng; Yuan, Xiaoping The stability of full dimensional KAM tori for nonlinear Schrödinger equation, Journal of Differential Equations, Volume 264 (2018) no. 7, pp. 4504-4563 | DOI:10.1016/j.jde.2017.12.013
  • Shi, Yanling; Xu, Xindong Quasi-periodic solutions for generalized Kaup system with quasi-periodic forcing, Journal of Mathematical Physics, Volume 59 (2018) no. 11 | DOI:10.1063/1.4990857
  • Corsi, Livia; Montalto, Riccardo Quasi-periodic solutions for the forced Kirchhoff equation on ^d, Nonlinearity, Volume 31 (2018) no. 11, p. 5075 | DOI:10.1088/1361-6544/aad6fe
  • Feola, Roberto; Iandoli, Felice Long time existence for fully nonlinear NLS with small Cauchy data on the circle, arXiv (2018) | DOI:10.48550/arxiv.1806.03437 | arXiv:1806.03437
  • Baldi, Pietro; Floridia, Giuseppe; Haus, Emanuele Exact controllability for quasilinear perturbations of KdV, Analysis PDE, Volume 10 (2017) no. 2, p. 281 | DOI:10.2140/apde.2017.10.281
  • Montalto, Riccardo A Reducibility Result for a Class of Linear Wave Equations on Td, International Mathematics Research Notices, Volume 2019 (2017) no. 6, p. 1788 | DOI:10.1093/imrn/rnx167
  • Giuliani, Filippo Quasi-periodic solutions for quasi-linear generalized KdV equations, Journal of Differential Equations, Volume 262 (2017) no. 10, pp. 5052-5132 | DOI:10.1016/j.jde.2017.01.021
  • Geng, Jiansheng; Wu, Jian Real Analytic Quasi-Periodic Solutions with More Diophantine Frequencies for Perturbed KdV Equations, Journal of Dynamics and Differential Equations, Volume 29 (2017) no. 3, pp. 1103-1130 | DOI:10.1007/s10884-016-9529-3
  • Berti, Massimiliano; Montalto, Riccardo Quasi-periodic water waves, Journal of Fixed Point Theory and Applications, Volume 19 (2017) no. 1, p. 129 | DOI:10.1007/s11784-016-0375-z
  • Montalto, Riccardo A note on KAM for gravity-capillary water waves, Journées équations aux dérivées partielles (2017), p. 1 | DOI:10.5802/jedp.648
  • Montalto, Riccardo Quasi-periodic solutions of forced Kirchhoff equation, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 1 | DOI:10.1007/s00030-017-0432-3
  • Feola, Roberto; Iandoli, Felice Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, arXiv (2017) | DOI:10.48550/arxiv.1711.02388 | arXiv:1711.02388
  • Berti, Massimiliano KAM for PDEs, Bollettino dell'Unione Matematica Italiana, Volume 9 (2016) no. 2, p. 115 | DOI:10.1007/s40574-016-0067-z
  • Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo KAM for autonomous quasi-linear perturbations of mKdV, Bollettino dell'Unione Matematica Italiana, Volume 9 (2016) no. 2, p. 143 | DOI:10.1007/s40574-016-0065-1
  • Feola, Roberto KAM for quasi-linear forced hamiltonian NLS, arXiv (2016) | DOI:10.48550/arxiv.1602.01341 | arXiv:1602.01341
  • Berti, Massimiliano; Kappeler, Thomas; Montalto, Riccardo Large KAM tori for perturbations of the dNLS equation, arXiv (2016) | DOI:10.48550/arxiv.1603.09252 | arXiv:1603.09252
  • Kappeler, Thomas; Montalto, Riccardo Canonical coordinates with tame estimates for the defocusing NLS equation on the circle, arXiv (2016) | DOI:10.48550/arxiv.1607.04454 | arXiv:1607.04454

Cité par 82 documents. Sources : Crossref, NASA ADS