Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 197-220.

The present paper is concerned with the parabolic–parabolic Keller–Segel system

tu=div(uq+1uv),t>0,xΩ,tv=Δvαv+u,t>0,xΩ,(u,v)(0)=(u0,v0)0,xΩ,
with degenerate critical diffusion q=q:=(N2)/N in space dimension N3, the underlying domain Ω being either Ω=RN or the open ball Ω=BR(0) of RN with suitable boundary conditions. It has remained open whether there exist solutions blowing up in finite time, the existence of such solutions being known for the parabolic–elliptic reduction with the second equation replaced by 0=Δvαv+u. Assuming that N=3,4 and α>0, we prove that radially symmetric solutions with negative initial energy blow up in finite time in Ω=RN and in Ω=BR(0) under mixed Neumann–Dirichlet boundary conditions. Moreover, if Ω=BR(0) and Neumann boundary conditions are imposed on both u and v, we show the existence of a positive constant C depending only on N, Ω, and the mass of u0 such that radially symmetric solutions blow up in finite time if the initial energy does not exceed −C. The criterion for finite time blowup is satisfied by a large class of initial data.

DOI : 10.1016/j.anihpc.2015.11.002
Classification : 35B44, 35B33, 35K15, 35K65, 35Q92
Mots clés : Blowup, Radial symmetry, Nonlinear diffusion, Parabolic–parabolic Keller–Segel system
@article{AIHPC_2017__34_1_197_0,
     author = {Lauren\c{c}ot, Philippe and Mizoguchi, Noriko},
     title = {Finite time blowup for the parabolic{\textendash}parabolic {Keller{\textendash}Segel} system with critical diffusion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {197--220},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.11.002},
     mrnumber = {3592684},
     zbl = {1357.35060},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.11.002/}
}
TY  - JOUR
AU  - Laurençot, Philippe
AU  - Mizoguchi, Noriko
TI  - Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 197
EP  - 220
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.11.002/
DO  - 10.1016/j.anihpc.2015.11.002
LA  - en
ID  - AIHPC_2017__34_1_197_0
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%A Mizoguchi, Noriko
%T Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 197-220
%V 34
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.11.002/
%R 10.1016/j.anihpc.2015.11.002
%G en
%F AIHPC_2017__34_1_197_0
Laurençot, Philippe; Mizoguchi, Noriko. Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 197-220. doi : 10.1016/j.anihpc.2015.11.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.11.002/

[1] Biler, P.; Corrias, L.; Dolbeault, J. Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis, J. Math. Biol., Volume 63 (2011), pp. 1–32 | DOI | MR | Zbl

[2] Blanchet, A.; Carrillo, J.A.; Laurençot, Ph. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differ. Equ., Volume 35 (2009), pp. 133–168 | DOI | MR | Zbl

[3] Blanchet, A.; Laurençot, Ph. The parabolic–parabolic Keller–Segel system with critical diffusion as a gradient flow in Rd,d3 , Commun. Partial Differ. Equ., Volume 38 (2013), pp. 658–686 | DOI | MR | Zbl

[4] Burczak, J.; Cieślak, T.; Morales-Rodrigo, C. Global existence vs. blowup in a fully parabolic quasilinear 1D Keller–Segel system, Nonlinear Anal., Volume 75 (2012), pp. 5215–5228 | DOI | MR | Zbl

[5] Calvez, V.; Corrias, L. The parabolic–parabolic Keller–Segel model in R2 , Commun. Math. Sci., Volume 6 (2008), pp. 417–447 | DOI | MR | Zbl

[6] Cieślak, T.; Laurençot, Ph. Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 437–446 | DOI | Numdam | MR | Zbl

[7] Cieślak, T.; Stinner, C. Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832–5851 | DOI | MR | Zbl

[8] Cieślak, T.; Stinner, C. Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2, Acta Appl. Math., Volume 129 (2014), pp. 135–146 | DOI | MR | Zbl

[9] Gajewski, H.; Zacharias, K. Global behavior of a reaction–diffusion system modelling chemotaxis, Math. Nachr., Volume 195 (1998), pp. 77–114 | DOI | MR | Zbl

[10] Guedes de Figueiredo, D.; dos Santos, E.M.; Miyagaki, O.H. Sobolev spaces of symmetric functions and applications, J. Funct. Anal., Volume 261 (2011), pp. 3735–3770 | DOI | MR | Zbl

[11] Herrero, M.A.; Velázquez, J.J.L. Singularity patterns in a chemotaxis model, Math. Ann., Volume 306 (1996), pp. 583–623 | DOI | MR | Zbl

[12] Herrero, M.A.; Velázquez, J.J.L. A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1997), pp. 633–683 | Numdam | MR | Zbl

[13] Horstmann, D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103–165 | MR | Zbl

[14] Ishida, S.; Yokota, T. Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type, J. Differ. Equ., Volume 252 (2012), pp. 1421–1440 | MR | Zbl

[15] Ishida, S.; Yokota, T. Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type with small data, J. Differ. Equ., Volume 252 (2012), pp. 2469–2491 | MR | Zbl

[16] Ishida, S.; Yokota, T. Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013), pp. 2569–2596 | MR | Zbl

[17] Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399–415 | DOI | MR | Zbl

[18] Lieb, E.H.; Loss, M. Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001 | MR | Zbl

[19] Mizoguchi, N. Global existence for the Cauchy problem of the parabolic–parabolic Keller–Segel system on the plane, Calc. Var. Partial Differ. Equ., Volume 48 (2013), pp. 491–505 | DOI | MR | Zbl

[20] N. Mizoguchi, M. Winkler, Blow-up in the two-dimensional parabolic Keller–Segel system, preprint.

[21] N. Mizoguchi, M. Winkler, Boundedness of global solutions in the two-dimensional parabolic Keller–Segel system, preprint.

[22] Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411–433 | MR | Zbl

[23] Schweyer, R. Stable blow-up dynamic for the parabolic–parabolic Patlak–Keller–Segel model (preprint) | arXiv

[24] Senba, T.; Suzuki, T. Applied Analysis: Mathematical Methods in Natural Science, Imperial College Press, London, 2011 | MR

[25] Sugiyama, Y. Blow-up criterion via scaling invariant quantities with effect on coefficient growth in Keller–Segel system, Differ. Integral Equ., Volume 23 (2010), pp. 619–634 | MR | Zbl

[26] Sugiyama, Y.; Kunii, H. Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term, J. Differ. Equ., Volume 227 (2006), pp. 333–364 | DOI | MR | Zbl

[27] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013) no. 9, pp. 748–767 | MR | Zbl

Cité par Sources :