Generic regularity of conservative solutions to a nonlinear wave equation
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 335-354.

The paper is concerned with conservative solutions to the nonlinear wave equation uttc(u)(c(u)ux)x = 0. For an open dense set of C3 initial data, we prove that the solution is piecewise smooth in the tx plane, while the gradient ux can blow up along finitely many characteristic curves. The analysis is based on a variable transformation introduced in [7], which reduces the equation to a semilinear system with smooth coefficients, followed by an application of Thom's transversality theorem.

DOI : 10.1016/j.anihpc.2015.12.004
Mots clés : Nonlinear wave equations, Generic regularity, Singularity
@article{AIHPC_2017__34_2_335_0,
     author = {Bressan, Alberto and Chen, Geng},
     title = {Generic regularity of conservative solutions to a nonlinear wave equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {335--354},
     publisher = {Elsevier},
     volume = {34},
     number = {2},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.12.004},
     mrnumber = {3610935},
     zbl = {1375.35062},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.12.004/}
}
TY  - JOUR
AU  - Bressan, Alberto
AU  - Chen, Geng
TI  - Generic regularity of conservative solutions to a nonlinear wave equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 335
EP  - 354
VL  - 34
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.12.004/
DO  - 10.1016/j.anihpc.2015.12.004
LA  - en
ID  - AIHPC_2017__34_2_335_0
ER  - 
%0 Journal Article
%A Bressan, Alberto
%A Chen, Geng
%T Generic regularity of conservative solutions to a nonlinear wave equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 335-354
%V 34
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.12.004/
%R 10.1016/j.anihpc.2015.12.004
%G en
%F AIHPC_2017__34_2_335_0
Bressan, Alberto; Chen, Geng. Generic regularity of conservative solutions to a nonlinear wave equation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 335-354. doi : 10.1016/j.anihpc.2015.12.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.12.004/

[1] Arnold, V. Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983 | MR | Zbl

[2] Bloom, J.M. The local structure of smooth maps of manifolds, Harvard University, 2004 (B.A. Thesis)

[3] Bressan, A.; Chen, G.; Zhang, Q. Unique conservative solutions to a variational wave equation, Arch. Ration. Mech. Anal., Volume 217 (2015) no. 3, pp. 1069–1101 | DOI | MR | Zbl

[4] Bressan, A.; Chen, G. Lipschitz metrics for a class of nonlinear wave equations (submitted. Available on) | arXiv | DOI | MR | Zbl

[5] Bressan, A.; Huang, T. Representation of dissipative solutions to a nonlinear variational wave equation, Commun. Math. Sci., Volume 14 (2016), pp. 31–53 | DOI | MR

[6] Bressan, A.; Huang, T.; Yu, F. Structurally stable singularities for a nonlinear wave equation, Bull. Inst. Math. Acad. Sin., Volume 10 (2015), pp. 449–478 | MR | Zbl

[7] Bressan, A.; Zheng, Y. Conservative solutions to a nonlinear variational wave equation, Commun. Math. Phys., Volume 266 (2006), pp. 471–497 | DOI | MR | Zbl

[8] Dafermos, C.; Geng, X. Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 8 (1991), pp. 231–269 | DOI | Numdam | MR | Zbl

[9] Damon, J. Generic properties of solutions to partial differential equations, Arch. Ration. Mech. Anal., Volume 140 (1997), pp. 353–403 | DOI | MR | Zbl

[10] Dubois, J.-G.; Dufour, J.-P. Singularités de solutions d'équations aux dérivées partielles, J. Differ. Equ., Volume 60 (1985), pp. 174–200 | MR | Zbl

[11] Glassey, R.T.; Hunter, J.K.; Zheng, Y. Singularities in a nonlinear variational wave equation, J. Differ. Equ., Volume 129 (1996), pp. 49–78 | DOI | MR | Zbl

[12] Golubitsky, M.; Guillemin, V. Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973 | DOI | MR | Zbl

[13] Grunert, K.; Holden, H.; Raynaud, X. Lipschitz metric for the Camassa–Holm equation on the line, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 2809–2827 | DOI | MR | Zbl

[14] Guckenheimer, J. Catastrophes and partial differential equations, Ann. Inst. Fourier, Volume 23 (1973), pp. 31–59 | DOI | Numdam | MR | Zbl

[15] Holden, H.; Raynaud, X. Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 871–964 | DOI | MR | Zbl

[16] Peixoto, M.; Peixoto, M. On the classification of flows on 2-manifolds, Dynamical Systems, Academic Press, New York, 1973, pp. 389–419 | MR | Zbl

[17] Schaeffer, D. A regularity theorem for conservation laws, Adv. Math., Volume 11 (1973), pp. 368–386 | DOI | MR | Zbl

[18] Thom, R. Structural Stability and Morphogenesis, W.A. Benjamin Inc., Reading, MA, 1975

Cité par Sources :