Global existence for reaction–diffusion systems with nonlinear diffusion and control of mass
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 571-591.

We prove here global existence in time of weak solutions for some reaction–diffusion systems with natural structure conditions on the nonlinear reactive terms which provide positivity of the solutions and uniform control of the total mass. The diffusion operators are nonlinear, in particular operators of the porous media type uidiΔuimi. Global existence is proved under the assumption that the reactive terms are bounded in L1. This extends previous similar results obtained in the semilinear case when the diffusion operators are linear of type uidiΔui.

DOI : 10.1016/j.anihpc.2016.03.002
Classification : 35K10, 35K40, 35K57
Mots clés : Reaction–diffusion systems, Nonlinear diffusion, Porous media equation, Global existence
@article{AIHPC_2017__34_3_571_0,
     author = {Laamri, El Haj and Pierre, Michel},
     title = {Global existence for reaction{\textendash}diffusion systems with nonlinear diffusion and control of mass},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {571--591},
     publisher = {Elsevier},
     volume = {34},
     number = {3},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.03.002},
     zbl = {1401.35166},
     mrnumber = {3633736},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.002/}
}
TY  - JOUR
AU  - Laamri, El Haj
AU  - Pierre, Michel
TI  - Global existence for reaction–diffusion systems with nonlinear diffusion and control of mass
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 571
EP  - 591
VL  - 34
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.002/
DO  - 10.1016/j.anihpc.2016.03.002
LA  - en
ID  - AIHPC_2017__34_3_571_0
ER  - 
%0 Journal Article
%A Laamri, El Haj
%A Pierre, Michel
%T Global existence for reaction–diffusion systems with nonlinear diffusion and control of mass
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 571-591
%V 34
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.002/
%R 10.1016/j.anihpc.2016.03.002
%G en
%F AIHPC_2017__34_3_571_0
Laamri, El Haj; Pierre, Michel. Global existence for reaction–diffusion systems with nonlinear diffusion and control of mass. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 571-591. doi : 10.1016/j.anihpc.2016.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.002/

[1] Abdellaoui, B.; Peral, I.; Walias, M. Some existence and regularity results for porous medium and fast equations with a gradient term, Trans. Am. Math. Soc. (2016) (in press) | MR

[2] Baras, P. Compacité de l'opérateur fu solution d'une équation non linéaire dudt+Au f , C. R. Acad. Sci., Sér. A, Volume 286 (1978), pp. 1113–1116 | MR | Zbl

[3] Barabanova, A. On the global existence of solutions of a reaction–diffusion system with exponential nonlinearity, Proc. Am. Math. Soc., Volume 122 (1994), pp. 827–831 | DOI | MR | Zbl

[4] Benachour, S.; Rebiai, B. Global classical solutions for reaction–diffusion systems with nonlinearities of exponential growth, J. Evol. Equ., Volume 10 (2010), pp. 511–527 | MR | Zbl

[5] Bendahmane, M.; Lepoutre, T.; Marrocco, A.; Perthame, B. Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl. (9), Volume 92 (2009) no. 6, pp. 651–667 | DOI | MR | Zbl

[6] Bothe, D.; Pierre, M. Quasi-steady-state approximation for a reaction–diffusion system with fast intermediate, J. Math. Anal. Appl., Volume 368 (2010) no. 1, pp. 120–132 | DOI | MR | Zbl

[7] Bothe, D.; Pierre, M. The instantaneous limit for reaction–diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst., Ser. B, Volume 5 (2012) no. 1, pp. 49–59 | MR | Zbl

[8] Bothe, D.; Pierre, M.; Rolland, G. Cross-diffusion limit for a reaction–diffusion system with fast reversible reaction, Commun. Partial Differ. Equ., Volume 37 (2012), pp. 1940–1966 | DOI | MR | Zbl

[9] Cañizo, J.; Desvillettes, L.; Fellner, K. Improved duality estimates and applications to reaction–diffusion equations, Commun. Partial Differ. Equ., Volume 39 (2014) no. 6, pp. 1185–1204 | DOI | MR | Zbl

[10] Desvillettes, L.; Fellner, K. Global existence for quadratic systems of reaction–diffusion, Adv. Nonlinear Stud., Volume 7 (2007), pp. 491–511 | DOI | MR | Zbl

[11] Desvillettes, L.; Fellner, K.; Pierre, M.; Vovelle, J. Global existence for quadratic systems of reaction–diffusion, Adv. Nonlinear Stud., Volume 7 (2007), pp. 491–511 | DOI | MR | Zbl

[12] Fitzgibbon, W.E.; Morgan, J.J.; Waggoner, S.J.; Arino, Eds O.; Axelrod, D.E.; Kimmel, M. Generalized Lyapunov methods for interactive systems in biology, Mathematical Population Dynamics, Proceedings of the 2nd International Conference, Marcel Dekker, Inc., 1991, pp. 177–188

[13] Fonseca, I.; Leoni, G. Modern Methods in the Calculus of Variations: Lp Spaces, Springer-Verlag, 2007 | MR

[14] Goudon, T.; Vasseur, A. Regularity analysis for systems or reaction–diffusion equations, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010), pp. 117–142 | Numdam | MR | Zbl

[15] Galaktionov, V.; Kurdyumov, S.; Samarskii, A. A parabolic system of quasilinear equations I, Differ. Uravn., Volume 19 (1983) no. 12, pp. 2123–2140 (in Russian) | MR | Zbl

[16] Hollis, S.L.; Martin, R.H.; Pierre, M. Global existence and boundedness in reaction–diffusion systems, SIAM J. Math. Anal., Volume 18 (1987) no. 3, pp. 744–761 | DOI | MR | Zbl

[17] Haraux, A.; Youkana, A. On a result of K. Masuda concerning reaction–diffusion equations, Tôhoku Math. J., Volume 40 (1988), pp. 159–163 | DOI | MR | Zbl

[18] Kanel, J.I.; Kirane, M. Global solutions of reaction–diffusion systems with a balance law and nonlinearities of exponential growth, J. Differ. Equ., Volume 165 (2000), pp. 24–41 | DOI | MR | Zbl

[19] Kouachi, S. Existence of global solutions to reaction–diffusion equations via a Lyapounov functional, Electron. J. Differ. Equ., Volume 68 (2001), pp. 1–10 | MR | Zbl

[20] Laamri, E.-H. Existence globale pour des systèmes de réaction-diffusion dans L1 , Thèse Université de Nancy, Volume 1 (1988)

[21] Laamri, E.-H. Study of the existence of global solutions of a strongly nonlinear parabolic reaction–diffusion system, Ann. Fac. Sci. Toulouse Math. (5), Volume 12 (1991) no. 3, pp. 373–390 (in French) | Numdam | MR | Zbl

[22] Laamri, E.-H. Global existence of classical solutions for a class of reaction–diffusion systems, Acta Appl. Math., Volume 115 (2011) no. 2, pp. 153–165 | MR | Zbl

[23] Lukkari, T. The porous medium equation with measure data, J. Evol. Equ., Volume 10 (2010), pp. 711–729 | DOI | MR | Zbl

[24] Lukkari, T. The fast diffusion equation with measure data, Nonlinear Differ. Equ., Volume 19 (2012), pp. 329–343 | MR | Zbl

[25] Masuda, K. On the global existence and asymptotic behavior of solutions of reaction–diffusion equations, Hokkaido Math. J., Volume 12 (1983), pp. 360–370 | DOI | MR | Zbl

[26] Martin, R.H.; Pierre, M.; Ames, W.F.; Rogers, C. Nonlinear reaction–diffusion systems, Nonlinear Equations in the Applied Science, Math. Sci. Eng., vol. 185, Ac. Press, New York, 1991 | MR

[27] Morgan, J. Global existence for semilinear parabolic systems, SIAM J. Math. Anal., Volume 20 (1989) no. 5, pp. 1128–1144 | DOI | MR | Zbl

[28] Morgan, J.; Waggoner, S. Global existence for a class of quasilinear reaction–diffusion systems, Commun. Appl. Anal., Volume 8 (2004), pp. 153–166 | MR | Zbl

[29] Pierre, M.; Diaz, J.I.; Lions, P.L. An L1-method to prove global existence in some reaction–diffusion systems, Contributions to Nonlinear Partial Differential Equations, Pitman Res. Notes in Math. Séries, 1987, pp. 220–231

[30] Pierre, M. Weak solutions and supersolutions in L1 for reaction–diffusion systems, J. Evol. Equ., Volume 3 (2003), pp. 153–168 | DOI | MR | Zbl

[31] Pierre, M. Global existence in reaction–diffusion systems with dissipation of mass: a survey, Milan J. Math., Volume 78 (2010) no. 2, pp. 417–455 | DOI | MR | Zbl

[32] M. Pierre, G. Rolland, Global existence for a class of quadratic reaction–diffusion systems with nonlinear diffusions and L1 initial data, Nonlinear Anal. Theory Methods Appl., . | DOI | MR

[33] Pierre, M.; Schmitt, D. Blow-up in reaction–diffusion systems with dissipation of mass, SIAM J. Math. Anal., Volume 18 (1997) no. 2, pp. 169–259 | DOI | MR | Zbl

[34] Pierre, M.; Schmitt, D. Blow-up in reaction–diffusion systems with dissipation of mass, SIAM Rev., Volume 42 (2000) no. 1, pp. 93–106 | DOI | MR | Zbl

[35] Pierre, M.; Texier-Picard, R. Global existence for degenerate quadratic reaction–diffusion systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 1553–1568 | Numdam | MR | Zbl

[36] Prüss, J. Maximal regularity for evolution equations in Lp-spaces, Conf. Sem. Mat. Univ. Bari, Volume 285 (2003), pp. 1–39 | MR

[37] Quittner, P.; Souplet, Ph. Superlinear Parabolic Problems: Blow-Up, Global Existence, Steady States, Advanced Texts, Birkhäuser, 2007 | MR | Zbl

[38] Schilling, R.L. Measures, Integrals and Martingales, Cambridge University Press, 2005 | DOI | MR | Zbl

[39] Schmitt, D. Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse, 1995 (Thèse Université Henri Poincaré)

[40] Vazquez, J.L. The Porous Medium Equation Mathematical Theory, Oxford Mathematical Monographs, 2006 | MR | Zbl

Cité par Sources :