Singularly perturbed equations of degenerate type
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 655-678.

This work is devoted to the study of nonvariational, singularly perturbed elliptic equations of degenerate type. The governing operator is anisotropic and ellipticity degenerates along the set of critical points. The singular behavior is of order O(1ϵ) along ϵ-level layers {uϵϵ}, and a non-homogeneous source acts in the noncoincidence region {uϵ>ϵ}. We obtain the precise geometric behavior of solutions near ϵ-level surfaces, by means of optimal regularity and sharp geometric nondegeneracy. We further investigate Hausdorff measure properties of ϵ-level surfaces. The analysis of the asymptotic limits as the ϵ parameter goes to zero is also carried out. The results obtained are new even if restricted to the uniformly elliptic, isotropic setting.

DOI : 10.1016/j.anihpc.2016.03.004
Classification : 35B25, 35J60
Mots clés : Singularly perturbed equations, Degenerate fully nonlinear operators, Geometric regularity theory
@article{AIHPC_2017__34_3_655_0,
     author = {Ara\'ujo, Dami\~ao J. and Ricarte, Gleydson C. and Teixeira, Eduardo V.},
     title = {Singularly perturbed equations of degenerate type},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {655--678},
     publisher = {Elsevier},
     volume = {34},
     number = {3},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.03.004},
     mrnumber = {3633739},
     zbl = {1362.35028},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.004/}
}
TY  - JOUR
AU  - Araújo, Damião J.
AU  - Ricarte, Gleydson C.
AU  - Teixeira, Eduardo V.
TI  - Singularly perturbed equations of degenerate type
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 655
EP  - 678
VL  - 34
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.004/
DO  - 10.1016/j.anihpc.2016.03.004
LA  - en
ID  - AIHPC_2017__34_3_655_0
ER  - 
%0 Journal Article
%A Araújo, Damião J.
%A Ricarte, Gleydson C.
%A Teixeira, Eduardo V.
%T Singularly perturbed equations of degenerate type
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 655-678
%V 34
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.004/
%R 10.1016/j.anihpc.2016.03.004
%G en
%F AIHPC_2017__34_3_655_0
Araújo, Damião J.; Ricarte, Gleydson C.; Teixeira, Eduardo V. Singularly perturbed equations of degenerate type. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 655-678. doi : 10.1016/j.anihpc.2016.03.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.03.004/

[1] Araújo, D.; Ricarte, G.; Teixeira, E. Geometric gradient estimates for solutions to degenerate elliptic equations, Calc. Var. Partial Differ. Equ., Volume 53 (2015) no. 3–4, pp. 605–625 | MR | Zbl

[2] Araújo, D.; Teixeira, E. Geometric approach to nonvariational singular elliptic equations, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 3, pp. 1019–1054 | DOI | MR | Zbl

[3] Caffarelli, Luis A. Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2), Volume 130 (1989) no. 1, pp. 189–213 | MR | Zbl

[4] Caffarelli, Luis A.; Cabré, Xavier Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995 | DOI | MR | Zbl

[5] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Uniform estimates for regularization of free boundary problems, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 567–619 | MR | Zbl

[6] Birindelli, I.; Demengel, F. Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6), Volume 13 (2004) no. 2, pp. 261–287 | DOI | Numdam | MR | Zbl

[7] Birindelli, I.; Demengel, F. The Dirichlet problem for singular fully nonlinear operators, Discrete Contin. Dyn. Syst. (2007), pp. 110–121 (Special vol) | MR | Zbl

[8] Crandall, M.; Ishii, H.; Lions, P-L. User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1–67 | DOI | MR | Zbl

[9] Crandall, M.G.; Kocan, M.; Lions, P.L.; Swiech, A. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Electron. J. Differ. Equ., Volume 24 (1999) | MR | Zbl

[10] Dávila, G.; Felmer, P.; Quaas, A. Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 19–20, pp. 1165–1168 | MR | Zbl

[11] Felmer, Patricio; Quaas, Alexander; Sirakov, Boyan Boyan existence and regularity results for fully nonlinear equations with singularities, Math. Ann., Volume 354 (2012) no. 1, pp. 377–400 | MR | Zbl

[12] Holmes, M. Introduction to Perturbation Methods, Texts in Applied Mathematics Springer, 2013 (December 5, 2012) | MR | Zbl

[13] Imbert, Cyril Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations, J. Differ. Equ., Volume 250 (2011) no. 3, pp. 1553–1574 | MR | Zbl

[14] Imbert, C.; Silvestre, S. C1,α regularity of solutions of some degenerate fully non-linear elliptic equations, Adv. Math., Volume 233 (2013), pp. 196–206 | DOI | MR | Zbl

[15] Imbert, C.; Silvestre, L. Estimates on elliptic equations that hold only where the gradient is large, J. Eur. Math. Soc. (JEMS), Volume 18 (2016) no. 6, pp. 1231–1338 | DOI | MR | Zbl

[16] Krylov, N.V.; Safonov, M.V. An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk SSSR, Volume 245 (1979), pp. 235–255 | MR | Zbl

[17] Krylov, N.V.; Safonov, M.V. Certain properties of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR, Volume 44 (1980), pp. 161–175 (Russian) | MR | Zbl

[18] Ricarte, G.; Teixeira, Eduardo V. Fully nonlinear singularly perturbed equations and asymptotic free boundaries, J. Funct. Anal., Volume 261 (2011) no. 6, pp. 1624–1673 | DOI | MR | Zbl

[19] Silvestre, Luis; Teixeira, Eduardo V. Regularity estimates for fully non-linear elliptic equations which are asymptotically convex, Progr. Nonlinear Differential Equations Appl., vol. 86, 2015, pp. 425–438 | DOI | MR | Zbl

[20] Teixeira, Eduardo V. A variational treatment for elliptic equations of the flame propagation type: regularity of the free boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 633–658 | Numdam | MR | Zbl

[21] Teixeira, Eduardo V. Universal moduli of continuity for solutions to fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 3, pp. 911–927 | MR | Zbl

Cité par Sources :