A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 679-698.

We propose an extension to higher dimensions of the Poincaré–Birkhoff Theorem which applies to Poincaré time-maps of Hamiltonian systems. Examples of applications to pendulum-type systems and weakly-coupled superlinear systems are also given.

DOI : 10.1016/j.anihpc.2016.04.002
Mots clés : Poincaré–Birkhoff, Periodic solutions, Hamiltonian systems
@article{AIHPC_2017__34_3_679_0,
     author = {Fonda, Alessandro and Ure\~na, Antonio J.},
     title = {A higher dimensional {Poincar\'e{\textendash}Birkhoff} theorem for {Hamiltonian} flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {679--698},
     publisher = {Elsevier},
     volume = {34},
     number = {3},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.04.002},
     mrnumber = {3633740},
     zbl = {1442.37076},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.04.002/}
}
TY  - JOUR
AU  - Fonda, Alessandro
AU  - Ureña, Antonio J.
TI  - A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 679
EP  - 698
VL  - 34
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.04.002/
DO  - 10.1016/j.anihpc.2016.04.002
LA  - en
ID  - AIHPC_2017__34_3_679_0
ER  - 
%0 Journal Article
%A Fonda, Alessandro
%A Ureña, Antonio J.
%T A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 679-698
%V 34
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.04.002/
%R 10.1016/j.anihpc.2016.04.002
%G en
%F AIHPC_2017__34_3_679_0
Fonda, Alessandro; Ureña, Antonio J. A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 3, pp. 679-698. doi : 10.1016/j.anihpc.2016.04.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.04.002/

[1] Arnold, V.I. Mathematical Methods in Classical Mechanics, Springer, Berlin, 1978 (translated from the 1974 Russian edition) | MR | Zbl

[2] Birkhoff, G.D. Proof of Poincaré's geometric theorem, Transl. Am. Math. Soc., Volume 14 (1913), pp. 14–22 | JFM | MR

[3] Birkhoff, G.D. Dynamical systems with two degrees of freedom, Transl. Am. Math. Soc., Volume 18 (1917), pp. 199–300 | JFM | MR

[4] Birkhoff, G.D. An extension of Poincaré's last geometric theorem, Acta Math., Volume 47 (1925), pp. 297–311 | JFM

[5] Birkhoff, G.D. Une généralisation à n dimensions du dernier théorème de géométrie de Poincaré, C. R. Acad. Sci., Paris, Volume 192 (1931), pp. 196–198 | JFM | Zbl

[6] Birkhoff, G.D. Dynamical Systems, Amer. Math. Soc., New York, 1927

[7] Boscaggin, A.; Ortega, R. Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Camb. Philos. Soc., Volume 157 (2014), pp. 279–296 | Zbl

[8] Brown, M.; Neumann, W.D. Proof of the Poincaré–Birkhoff fixed point theorem, Mich. Math. J., Volume 24 (1977), pp. 21–31 | DOI | MR | Zbl

[9] Castro, A.; Lazer, A.C. On periodic solutions of weakly coupled systems of differential equations, Boll. Unione Mat. Ital., Volume 18B (1981), pp. 733–742 | Zbl

[10] Chang, K.C. On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal., Volume 13 (1989), pp. 527–537 | Zbl

[11] Conley, C.C.; Zehnder, E.J. The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math., Volume 73 (1983), pp. 33–49 | DOI | MR | Zbl

[12] Ding, W.-Y. A generalization of the Poincaré–Birkhoff theorem, Proc. Am. Math. Soc., Volume 88 (1983), pp. 341–346 | MR | Zbl

[13] Ding, T.; Zanolin, F. Periodic solutions of Duffing's equations with superquadratic potential, J. Differ. Equ., Volume 95 (1992), pp. 240–258 | Zbl

[14] Filippov, A.F. Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988 | Zbl

[15] Fonda, A.; Garrione, M.; Gidoni, P. Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal. (2016) (in press) | DOI | Zbl

[16] Fonda, A.; Manasevich, R.F.; Zanolin, F. Subharmonic solutions for some second order differential equations with singularities, SIAM J. Math. Anal., Volume 24 (1993), pp. 1294–1311 | DOI | MR | Zbl

[17] Fonda, A.; Mawhin, J. Differential Equations and Applications, Ohio Univ. Press, Athens (1989), pp. 298–304 (Columbus, 1988) | MR | Zbl

[18] Fonda, A.; Sfecci, A. Periodic solutions of weakly coupled superlinear systems, J. Differ. Equ., Volume 260 (2016), pp. 2150–2162 | Zbl

[19] Fonda, A.; Toader, R. Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud., Volume 12 (2012), pp. 395–408 | Zbl

[20] Franks, J. Generalizations of the Poincaré–Birkhoff theorem, Ann. Math., Volume 128 (1988), pp. 139–151 | Zbl

[21] Golé, C. Symplectic Twist Maps. Global Variational Techniques, Adv. Ser. Nonlinear Dynam., vol. 18, World Scientific Publ., River Edge, 2001 | Zbl

[22] Josellis, F. Lyusternik–Schnirelman theory for flows and periodic orbits for Hamiltonian systems on Tn×Rn , Proc. London Math. Soc. (3), Volume 68 (1994), pp. 641–672 | Zbl

[23] Lax, P.D. Functional Analysis, Pure Appl. Math., Wiley & Sons, New York, 2002 | Zbl

[24] Liu, J.Q. A generalized saddle point theorem, J. Differ. Equ., Volume 82 (1989), pp. 372–385 | Zbl

[25] Le Calvez, P.; Wang, J. Some remarks on the Poincaré–Birkhoff theorem, Proc. Am. Math. Soc., Volume 138 (2010), pp. 703–715 | Zbl

[26] Mawhin, J. Analyse non linéaire, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 6 (1989) no. suppl., pp. 415–434 (Perpignan, 1987) | Numdam | MR | Zbl

[27] Mawhin, J. Multiplicity of solutions of variational systems involving ϕ-Laplacians with singular ϕ and periodic nonlinearities, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 4015–4026 | Zbl

[28] Mawhin, J.; Willem, M. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differ. Equ., Volume 52 (1984), pp. 264–287 | Zbl

[29] McDuff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford University Press, New York, 1995 | Zbl

[30] Moser, J. Monotone twist mappings and the calculus of variations, Ergod. Theory Dyn. Syst., Volume 6 (1986), pp. 401–413 | Zbl

[31] Moser, J.; Zehnder, E.J. Notes on Dynamical Systems, Amer. Math. Soc., Providence, 2005 | Zbl

[32] Obersnel, F.; Omari, P. Multiple bounded variation solutions of a periodically perturbed sine-curvature equation, Commun. Contemp. Math., Volume 13 (2011), pp. 1–21 | Zbl

[33] Poincaré, H. Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, 1987 (Tome III. Reprint of the 1899 original) | Zbl

[34] Poincaré, H. Sur un théorème de géométrie, Rend. Circ. Mat. Palermo, Volume 33 (1912), pp. 375–407 | DOI | JFM

[35] Rabinowitz, P.H. On a class of functionals invariant under a Zn action, Transl. Am. Math. Soc., Volume 310 (1988), pp. 303–311 | Zbl

[36] Rebelo, C. A note on the Poincaré–Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., Volume 29 (1997), pp. 291–311 | Zbl

[37] Szulkin, A. A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., Volume 15 (1990), pp. 725–739 | Zbl

[38] Szulkin, A. Cohomology and Morse theory for strongly indefinite functionals, Math. Z., Volume 209 (1992), pp. 375–418 | Zbl

Cité par Sources :