In this paper, we study the elliptic problem with Dirac mass
Keywords: Weak solution, Mountain Pass theorem, Dirac mass
@article{AIHPC_2018__35_3_729_0, author = {Chen, Huyuan and Felmer, Patricio and Yang, Jianfu}, title = {Weak solutions of semilinear elliptic equation involving {Dirac} mass}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {729--750}, publisher = {Elsevier}, volume = {35}, number = {3}, year = {2018}, doi = {10.1016/j.anihpc.2017.08.001}, mrnumber = {3778650}, zbl = {1393.35057}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.001/} }
TY - JOUR AU - Chen, Huyuan AU - Felmer, Patricio AU - Yang, Jianfu TI - Weak solutions of semilinear elliptic equation involving Dirac mass JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 729 EP - 750 VL - 35 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.001/ DO - 10.1016/j.anihpc.2017.08.001 LA - en ID - AIHPC_2018__35_3_729_0 ER -
%0 Journal Article %A Chen, Huyuan %A Felmer, Patricio %A Yang, Jianfu %T Weak solutions of semilinear elliptic equation involving Dirac mass %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 729-750 %V 35 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.001/ %R 10.1016/j.anihpc.2017.08.001 %G en %F AIHPC_2018__35_3_729_0
Chen, Huyuan; Felmer, Patricio; Yang, Jianfu. Weak solutions of semilinear elliptic equation involving Dirac mass. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 3, pp. 729-750. doi : 10.1016/j.anihpc.2017.08.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.001/
[1] Local behaviour of the solutions of some elliptic equations, Commun. Math. Phys., Volume 108 (1987), pp. 177–192 | DOI | MR | Zbl
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349–381 | DOI | MR | Zbl
[3] Singularités éliminables pour des équations semi linéaires, Ann. Inst. Fourier Grenoble, Volume 34 (1984), pp. 185–206 | DOI | Numdam | MR | Zbl
[4] Critere d'existence de soltuions positive pour des equations semi-lineaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | DOI | Numdam | MR | Zbl
[5] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ., Volume 3 (2003), pp. 673–770 | DOI | MR | Zbl
[6] Quasilinear Lane–Emden equations with absorption and measure data, J. Math. Pures Appl., Volume 102 (2014) no. 2, pp. 315–337 | MR | Zbl
[7] An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoam., Volume 16 (2000), pp. 477–513 | MR | Zbl
[8] Variational Inequalities and Complementarity Problems, Wiley, Chichester (1980), pp. 53–73 (Proc. Internat. School, Erice) | MR | Zbl
[9] Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989), pp. 271–297 | DOI | MR | Zbl
[10] Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differ. Equ., Volume 98 (1992), pp. 34–56 | DOI | MR | Zbl
[11] Global and local behaviour of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 34 (1981), pp. 525–598 | DOI | MR | Zbl
[12] Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 64 (1991), pp. 271–324 | DOI | MR | Zbl
[13] Elliptic partial differential equations, Am. Math. Soc., Volume 1 (2011) | Zbl
[14] Isolated singularities in semilinear problems, J. Differ. Equ., Volume 38 (1980) no. 3, pp. 441–450 | DOI | MR | Zbl
[15] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. Anal., Volume 144 (1998), pp. 201–231 | DOI | MR | Zbl
[16] The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl., Volume 77 (1998), pp. 481–524 | DOI | MR | Zbl
[17] Removable singularities and boundary traces, J. Math. Pures Appl., Volume 80 (2001), pp. 879–900 | DOI | MR | Zbl
[18] The boundary trace and generalized B.V.P. for semilinear elliptic equations with coercive absorption, Commun. Pure Appl. Math., Volume 56 (2003), pp. 689–731 | DOI | MR | Zbl
[19] A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differ. Geom., Volume 44 (1996), pp. 331–370 | DOI | MR | Zbl
[20] Positive solutions for semilinear elliptic equations with singular forcing terms, J. Differ. Equ., Volume 235 (2007) no. 2, pp. 439–483 | DOI | MR | Zbl
[21] Existence and convergence of positive weak solutions of in bounded domains of , Calc. Var. Partial Differ. Equ., Volume 1 (1993), pp. 243–265 | DOI | MR | Zbl
[22] Elliptic equations involving measures, Stationary Partial Differential Equations, Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 593–712 | MR | Zbl
Cited by Sources: