Nonlinear responses from the interaction of two progressing waves at an interface
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 347-363.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

For scalar semilinear wave equations, we analyze the interaction of two (distorted) plane waves at an interface between media of different nonlinear properties. We show that new waves are generated from the nonlinear interactions, which might be responsible for the observed nonlinear effects in applications. Also, we show that the incident waves and the nonlinear responses determine the location of the interface and some information of the nonlinear properties of the media. In particular, for the case of a jump discontinuity at the interface, we can determine the magnitude of the jump.

DOI : 10.1016/j.anihpc.2018.04.005
Mots-clés : Nonlinear interaction, Progressing waves, Interface, Inverse problems
@article{AIHPC_2019__36_2_347_0,
     author = {de Hoop, Maarten and Uhlmann, Gunther and Wang, Yiran},
     title = {Nonlinear responses from the interaction of two progressing waves at an interface},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {347--363},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.04.005},
     mrnumber = {3913189},
     zbl = {1409.58018},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.04.005/}
}
TY  - JOUR
AU  - de Hoop, Maarten
AU  - Uhlmann, Gunther
AU  - Wang, Yiran
TI  - Nonlinear responses from the interaction of two progressing waves at an interface
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 347
EP  - 363
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.04.005/
DO  - 10.1016/j.anihpc.2018.04.005
LA  - en
ID  - AIHPC_2019__36_2_347_0
ER  - 
%0 Journal Article
%A de Hoop, Maarten
%A Uhlmann, Gunther
%A Wang, Yiran
%T Nonlinear responses from the interaction of two progressing waves at an interface
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 347-363
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.04.005/
%R 10.1016/j.anihpc.2018.04.005
%G en
%F AIHPC_2019__36_2_347_0
de Hoop, Maarten; Uhlmann, Gunther; Wang, Yiran. Nonlinear responses from the interaction of two progressing waves at an interface. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 347-363. doi : 10.1016/j.anihpc.2018.04.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.04.005/

[1] Bär, C.; Ginoux, N.; Pfäffle, F. Wave Equations on Lorentzian Manifolds and Quantization, ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2007 | DOI | MR | Zbl

[2] Beals, M. Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Prog. Nonlinear Differ. Equ. Appl., vol. 3, Birkhäuser, Boston, 1989 | MR | Zbl

[3] Bony, J.M. Propagation et interaction des singularités pour les solutions des équations au dérivées paritelles non-linéaires, Proc. of the Internations Congress of Mathematicians, 1983 | MR | Zbl

[4] Christ, M.; Kiselev, A. Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409–425 | DOI | MR | Zbl

[5] de Hoop, M.; Uhlmann, G.; Vasy, A. Diffraction from conormal singularities, Ann. Sci. Écol. Norm. Supér., 4e ser., Volume 48 (2015), pp. 351–408 | MR | Zbl

[6] Duistermaat, J.J. Fourier Integral Operators, Prog. Math., vol. 130, Birkhäuser, Boston, 1996 | MR | Zbl

[7] Fatemi, M.; Greenleaf, J.F. Ultrasound-stimulated vibro-acoustic spectrography, Science, Volume 280 (1998) no. 5360, pp. 82–85 | DOI

[8] Fatemi, M.; Greenleaf, J.F. Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, Proc. Natl. Acad. Sci., Volume 96 (1999) no. 12, pp. 6603–6608 | DOI

[9] Hughes, T.; Kato, T.; Marsden, J. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal., Volume 63 (1977) no. 3, pp. 273–294 | DOI | MR | Zbl

[10] Hörmander, L. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators, Class. Math., Springer, Berlin, 2007 | DOI | MR | Zbl

[11] Hörmander, L. The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators, Class. Math., Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[12] Greenleaf, A.; Uhlmann, G. Recovering singularities of a potential from singularities of scattering data, Commun. Math. Phys., Volume 157 (1993) no. 3, pp. 549–572 | DOI | MR | Zbl

[13] Johnson, P.A.; McCall, K.R. Observation and implications of nonlinear elastic wave response in rock, Geophys. Res. Lett. (1994) | DOI

[14] Johnson, P.A.; Shankland, T.J. Nonlinear generation of elastic waves in granite and sandstone: continuous wave and travel time observations, J. Geophys. Res., Volume 94B (1989) no. 12, pp. 17729–17733

[15] Johnson, P.A.; Shankland, T.J.; O'Connell, R.J.; Albricht, J.N. Nonlinear generation of elastic waves in crystalline rock, J. Geophys. Res., Volume 92B (1987) no. 5, pp. 3597–3602

[16] Jones, G.; Kobett, D.R. Interaction of elastic waves in an isotropic solid, J. Acoust. Soc. Am., Volume 35 (1963) no. 1, pp. 5–10 | DOI | MR

[17] Kurylev, Y.; Lassas, M.; Uhlmann, G. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., Volume 212 (2018) no. 3, pp. 781–857 | DOI | MR | Zbl

[18] Kurylev, Y.; Lassas, M.; Uhlmann, G. Inverse problems in spacetime I: Inverse problems for Einstein equations—extended preprint version, 2014 | arXiv

[19] Kuvshinov, B.N.; Smit, T.J.H.; Campman, X.H. Non-linear interaction of elastic waves in rocks, Geophys. J. Int., Volume 194 (2013) no. 3, pp. 1920–1940 | DOI

[20] Lassas, M.; Uhlmann, G.; Wang, Y. Inverse problems for semilinear wave equations on Lorentzian manifolds, Commun. Math. Phys., Volume 360 (2018) no. 2, pp. 555–609 | arXiv | DOI | MR | Zbl

[21] Melrose, R.; Ritter, N. Interaction of nonlinear progressing waves for semilinear wave equations, Ann. Math., Volume 121 (1985) no. 1, pp. 187–213 | DOI | MR | Zbl

[22] Melrose, R.; Uhlmann, G. Lagrangian intersection and the Cauchy problem, Commun. Pure Appl. Math., Volume 32 (1979) no. 4, pp. 483–519 | DOI | MR | Zbl

[23] Mockenhaupt, G.; Seeger, A.; Sogge, C. Local smoothing of Fourier integral operators and Carleson–Sjölin estimates, J. Am. Math. Soc., Volume 6 (1993) no. 1, pp. 65–130 | MR | Zbl

[24] Rauch, J.; Reed, M. Singularities produced by the nonlinear interaction of three progressing waves, examples, Commun. Partial Differ. Equ., Volume 7 (1982) no. 9, pp. 1117–1133 | DOI | MR | Zbl

[25] Rollins, F.R.; Taylor, L.H.; Todd, P.H. Ultrasonic study of three phonon interactions. II. Experimental results, Phys. Rev., Volume 136 (1964) no. 3A, pp. A597–A601 | DOI

[26] Smith, H.; Sogge, C. Global Strichartz estimates for nontrapping perturbations of the Laplacian, Commun. Partial Differ. Equ., Volume 25 (2000) no. 11–12, pp. 2171–2183 | MR | Zbl

[27] Sogge, C. Lectures on Non-Linear Wave Equations, Monogr. Anal., vol. II, International Press, Boston, 1995 | MR | Zbl

Cité par Sources :