Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 257-294.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.

DOI : 10.1016/j.anihpc.2018.05.003
Mots-clés : Nonlinear Schrödinger equation, Point interactions, Volterra equations
@article{AIHPC_2019__36_1_257_0,
     author = {Carlone, Raffaele and Correggi, Michele and Tentarelli, Lorenzo},
     title = {Well-posedness of the two-dimensional nonlinear {Schr\"odinger} equation with concentrated nonlinearity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {257--294},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.05.003},
     mrnumber = {3906872},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.003/}
}
TY  - JOUR
AU  - Carlone, Raffaele
AU  - Correggi, Michele
AU  - Tentarelli, Lorenzo
TI  - Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 257
EP  - 294
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.003/
DO  - 10.1016/j.anihpc.2018.05.003
LA  - en
ID  - AIHPC_2019__36_1_257_0
ER  - 
%0 Journal Article
%A Carlone, Raffaele
%A Correggi, Michele
%A Tentarelli, Lorenzo
%T Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 257-294
%V 36
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.003/
%R 10.1016/j.anihpc.2018.05.003
%G en
%F AIHPC_2019__36_1_257_0
Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 257-294. doi : 10.1016/j.anihpc.2018.05.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.003/

[1] Abramovitz, M.; Stegun, I.A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol. 55, National Bureau of Standards, Washington D.C., 1964 | MR | Zbl

[2] Adami, R. A Class of Schrödinger Equations with Concentrated Nonlinearity, Università degli Studi di Roma “La Sapienza”, 2000 (Ph.D. Thesis)

[3] Adami, R.; Dell'Antonio, G.; Figari, R.; Teta, A. The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 3, pp. 477–500 | Numdam | MR | Zbl

[4] Adami, R.; Dell'Antonio, G.; Figari, R.; Teta, A. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004) no. 1, pp. 121–137 | DOI | Numdam | MR | Zbl

[5] Adami, R.; Teta, A. A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Funct. Anal., Volume 180 (2001) no. 1, pp. 148–175 | DOI | MR | Zbl

[6] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H. Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1988 | MR | Zbl

[7] Bulashenko, O.M.; Kochelap, V.A.; Bonilla, L.L. Coherent patterns and self-induced diffraction of electrons on a thin nonlinear layer, Phys. Rev. B, Volume 54 (1996) no. 2, pp. 1537–1540

[8] Cacciapuoti, C.; Carlone, R.; Noja, D.; Posilicano, A. The one-dimensional Dirac equation with concentrated nonlinearity, SIAM J. Math. Anal., Volume 49 (2017) no. 3, pp. 2246–2268 | DOI | MR

[9] Cacciapuoti, C.; Finco, D.; Noja, D.; Teta, A. The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., Volume 104 (2014) no. 12, pp. 1557–1570 | DOI | MR | Zbl

[10] Cacciapuoti, C.; Finco, D.; Noja, D.; Teta, A. The point-like limit for a NLS equation with concentrated nonlinearity in dimension three, J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1762–1809 | DOI | MR

[11] Carlone, R.; Correggi, M.; Figari, R. Two-dimensional time-dependent point interactions, Functional Analysis and Operator Theory for Quantum Physics, Eur. Math. Soc., Zürich, 2017, pp. 189–211 | DOI | MR

[12] Carlone, R.; Fiorenza, A.; Tentarelli, L. The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions, J. Funct. Anal., Volume 273 (2017) no. 3, pp. 1258–1294 | DOI | MR

[13] Cazenave, T. An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 22, I.M.U.F.R.J., Rio de Janeiro, 1989

[14] Correggi, M.; Dell'Antonio, G. Decay of a bound state under a time-periodic perturbation: a toy case, J. Phys. A, Volume 38 (2005) no. 22, pp. 4769–4781 | DOI | MR | Zbl

[15] Correggi, M.; Dell'Antonio, G.; Figari, R.; Mantile, A. Ionization for three dimensional time-dependent point interactions, Commun. Math. Phys., Volume 257 (2005) no. 1, pp. 169–192 | DOI | MR | Zbl

[16] Cruz-Uribe, D.V.; Fiorenza, A. Variable Lebesgue spaces. Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 | MR | Zbl

[17] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999) no. 3, pp. 463–512 | DOI

[18] Dell'Antonio, G.; Figari, R.; Teta, A. Hamiltonians for systems of N particles interacting through point interactions, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 60 (1994) no. 3, pp. 253–290 | Numdam | MR | Zbl

[19] Dell'Antonio, G.; Figari, R.; Teta, A. The Schrödinger equation with moving point interactions in three dimensions, Stochastic Processes, Physics and Geometry: New Interplays, I, CMS Conf. Proc., vol. 28, Amer. Math. Soc., Providence, RI, 2000, pp. 99–113 | MR | Zbl

[20] Dror, N.; Malomed, B.A. Solitons supported by localized nonlinearities in periodic media, Phys. Rev. A, Volume 83 (2011) no. 3 | DOI

[21] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions, vol. III, Robert E. Krieger Publishing Co., Melbourne, Fla., 1981

[22] Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl

[23] Hardy, G.H. Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work, Cambridge University Press/Macmillan Company, Cambridge, England/New York, 1940 | JFM | MR

[24] Hörmander, L. The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1990 | MR | Zbl

[25] Jona Lasinio, G.; Presilla, C.; Sjostrand, J. On Schrödinger equations with concentrated nonlinearities, Ann. Phys., Volume 240 (1995) no. 1, pp. 1–21 | MR | Zbl

[26] Kufner, A.; Persson, L.E. Weighted Inequalities of Hardy Type, World Scientific Publishing Co., River Edge, NJ, 2003 | DOI | MR | Zbl

[27] Li, K.; Kevrekidis, P.G.; Malomed, B.A.; Frantzeskakis, D.J. Transfer and scattering of wave packets by a nonlinear trap, Phys. Rev. E, Volume 84 (2011) no. 5

[28] Malomed, B.A. Nonlinear Schrödinger equations, Encyclopedia of Nonlinear Science, Routledge, New York, 2005, pp. 639–643

[29] Malomed, B.A.; Azbel, M.Y. Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, Volume 47 (1993) no. 16, pp. 10402–10406 | DOI

[30] Miller, R.K. Nonlinear Volterra Integral Equations, Mathematics Lecture Note Series, W.A. Benjamin Inc., Menlo Park, Calif., 1971 | MR | Zbl

[31] Molina, M.I.; Bustamante, C.A. The attractive nonlinear delta-function potential, Am. J. Phys., Volume 70 (2002) no. 1, pp. 67–70 | DOI

[32] Nier, F. The dynamics of some quantum open systems with short-range nonlinearities, Nonlinearity, Volume 11 (1998) no. 4, pp. 1127–1172 | DOI | MR | Zbl

[33] Noja, D.; Posilicano, A. Wave equations with concentrated nonlinearities, J. Phys. A, Volume 38 (2005) no. 22, pp. 5011–5022 | DOI | MR | Zbl

[34] Presilla, C.; Jona-Lasinio, G.; Capasso, F. Nonlinear feedback oscillations in resonant tunneling through double barriers, Phys. Rev. B, Volume 43 (1991) no. 6, pp. 5200–5203 | DOI

[35] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993 | MR | Zbl

[36] Sayapova, M.R.; Yafaev, D.R. The evolution operator for time-dependent potentials of zero radius, Tr. Mat. Inst. Steklova, Volume 159 (1983), pp. 167–174 | MR | Zbl

[37] Sukhorukov, A.A.; Kivshar, Y.S.; Bang, O. Two-color nonlinear localized photonic modes, Phys. Rev. E, Volume 60 (1999) no. 1, pp. R41–R44 | DOI

[38] Sukhorukov, A.A.; Kivshar, Y.S.; Bang, O.; Rasmussen, J.J.; Christiansen, P.L. Nonlinearity and disorder: classification and stability of nonlinear impurity modes, Phys. Rev. E, Volume 63 (2001) no. 3-II

[39] Yeh, P. Optical Waves in Layered Media, Wiley, New York, 2005

Cité par Sources :