Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 295-326.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Based on a previously introduced downscaling data assimilation algorithm, which employs a nudging term to synchronize the coarse mesh spatial scales, we construct a determining map for recovering the full trajectories from their corresponding coarse mesh spatial trajectories, and investigate its properties. This map is then used to develop a downscaling data assimilation scheme for statistical solutions of the two-dimensional Navier–Stokes equations, where the coarse mesh spatial statistics of the system is obtained from discrete spatial measurements. As a corollary, we deduce that statistical solutions for the Navier–Stokes equations are determined by their coarse mesh spatial distributions. Notably, we present our results in the context of the Navier–Stokes equations; however, the tools are general enough to be implemented for other dissipative evolution equations.

DOI : 10.1016/j.anihpc.2018.05.004
Classification : 35Q30, 76D06, 34A45, 34A55, 35B42, 93B52
Mots-clés : Data assimilation, Downscaling, Nudging, Navier–Stokes equations, Determining form, Vishik–Fursikov statistical solutions
@article{AIHPC_2019__36_2_295_0,
     author = {Biswas, Animikh and Foias, Ciprian and Mondaini, Cecilia F. and Titi, Edriss S.},
     title = {Downscaling data assimilation algorithm with applications to statistical solutions of the {Navier{\textendash}Stokes} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {295--326},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.05.004},
     mrnumber = {3913187},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.004/}
}
TY  - JOUR
AU  - Biswas, Animikh
AU  - Foias, Ciprian
AU  - Mondaini, Cecilia F.
AU  - Titi, Edriss S.
TI  - Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 295
EP  - 326
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.004/
DO  - 10.1016/j.anihpc.2018.05.004
LA  - en
ID  - AIHPC_2019__36_2_295_0
ER  - 
%0 Journal Article
%A Biswas, Animikh
%A Foias, Ciprian
%A Mondaini, Cecilia F.
%A Titi, Edriss S.
%T Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 295-326
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.004/
%R 10.1016/j.anihpc.2018.05.004
%G en
%F AIHPC_2019__36_2_295_0
Biswas, Animikh; Foias, Ciprian; Mondaini, Cecilia F.; Titi, Edriss S. Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 295-326. doi : 10.1016/j.anihpc.2018.05.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.004/

[1] Aliprantis, C.D.; Border, K.C. Infinite Dimensional Analysis – A Hitchhiker's Guide, Springer-Verlag, 2006 | MR | Zbl

[2] Albanez, D.; Nussenzveig-Lopes, H.; Titi, E.S. Continuous data assimilation for the three-dimensional Navier–Stokes- α model, Asymptot. Anal., Volume 97 (2016), pp. 139–164 | MR

[3] Altaf, M.U.; Titi, E.S.; Gebrael, T.; Knio, O.; Zhao, L.; McCabe, M.F.; Hoteit, I. Downscaling the 2D Bénard convection equations using continuous data assimilation, Comput. Geosci., Volume 21 (2017) no. 3, pp. 393–410 | DOI | MR

[4] Asch, M.; Bocquet, M.; Nodet, M. Data Assimilation – Methods, Algorithms, and Applications, Fundamentals of Algorithms, vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016 | MR

[5] Anthes, R.A. Data assimilation and initialization of hurricane prediction models, J. Atmos. Sci., Volume 31 (1974), pp. 702–719 | DOI

[6] Auroux, D.; Blum, J. A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlinear Process. Geophys., Volume 15 (2008), pp. 305–319 | DOI

[7] Auroux, D.; Blum, J.; Nodet, M. Diffusive Back and Forth Nudging algorithm for data assimilation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 849–854 | DOI | MR | Zbl

[8] Azouani, A.; Olson, E.; Titi, E.S. Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., Volume 24 (2014), pp. 277–304 | DOI | MR | Zbl

[9] Azouani, A.; Titi, E.S. Feedback control of nonlinear dissipative systems by finite determining parameters – a reaction diffusion paradigm, Evol. Equ. Control Theory, Volume 3 (2014) no. 4, pp. 579–594 | MR | Zbl

[10] Bessaih, H.; Olson, E.; Titi, E.S. Continuous data assimilation with stochastically noisy data, Nonlinearity, Volume 28 (2015), pp. 729–753 | DOI | MR

[11] Biswas, A.; Hudson, J.; Larios, A.; Pei, Y. Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields, Asymptot. Anal., Volume 108 (2018) no. 1–2 | MR

[12] Biswas, A.; Martinez, V.R. Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations, Nonlinear Anal., Real World Appl., Volume 35 (2017), pp. 132–157 | DOI | MR

[13] Blömker, D.; Law, K.; Stuart, A.M.; Zygalakis, K.C. Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation, Nonlinearity, Volume 26 (2013) no. 8, pp. 2193–2219 | DOI | MR | Zbl

[14] Brett, C.E.A.; Lam, K.F.; Law, K.J.H.; McCormick, D.S.; Scott, M.R.; Stuart, A.M. Accuracy and stability of filters for dissipative PDEs, Phys. D, Volume 245 (2013), pp. 34–45 | MR | Zbl

[15] Bronzi, A.; Mondaini, C.F.; Rosa, R. Abstract framework for the theory of statistical solutions, J. Differ. Equ., Volume 260 (2016), pp. 8428–8484 | DOI | MR

[16] Chepyzhov, V.; Vishik, M. Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, vol. 49, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[17] Cockburn, B.; Jones, D.A.; Titi, E.S. Determining degrees of freedom for nonlinear dissipative equations, C. R. Acad. Sci. Paris, Sér. 1 Math., Volume 321 (1995) no. 5, pp. 563–568 | MR | Zbl

[18] Cockburn, B.; Jones, D.A.; Titi, E.S. Estimating the number of degrees of freedom for nonlinear dissipative systems, Math. Comput., Volume 66 (1997) no. 219, pp. 1073–1087 | DOI | MR | Zbl

[19] Constantin, P.; Foias, C. Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988 | MR | Zbl

[20] Charney, J.G.; Halem, M.; Jastrow, R. Use of incomplete historical data to infer the present state of the atmosphere, J. Atmos. Sci., Volume 26 (1969), pp. 1160–1163 | DOI

[21] Chorin, A.J.; Lu, F.; Miller, R.N.; Morzfeld, M.; Tu, X. Sampling, feasibility and priors in data assimilation, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 8, pp. 4227–4246 | MR

[22] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Sciences, vol. 70, Springer-Verlag, New York, 1989 | MR | Zbl

[23] Daley, R. Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, 1991

[24] Dudley, R.M. Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl

[25] Farhat, A.; Johnston, H.; Jolly, M.; Titi, E.S. Assimilation of nearly turbulent Rayleigh–Bénard flow through vorticity or local circulation measurements: a computational study, J. Sci. Comput. (2018) | DOI | MR

[26] Farhat, A.; Jolly, M.S.; Titi, E.S. Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, Volume 303 (2015), pp. 59–66 | DOI | MR

[27] Farhat, A.; Lunasin, E.; Titi, E.S. Abridged continuous data assimilation for the 2D Navier–Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., Volume 18 (2016) no. 1, pp. 1–23 | DOI | MR

[28] Farhat, A.; Lunasin, E.; Titi, E.S. Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. Math. Anal. Appl., Volume 438 (2016) no. 1, pp. 492–506 | DOI | MR

[29] Farhat, A.; Lunasin, E.; Titi, E.S. On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model, Math. Clim. Weather Forecast., Volume 2 (2016) no. 1, pp. 61–74

[30] Foias, C. Statistical study of Navier–Stokes equations I, Rend. Semin. Mat. Univ. Padova, Volume 48 (1972), pp. 219–348 | Numdam | MR | Zbl

[31] Foias, C. Statistical study of Navier–Stokes equations II, Rend. Semin. Mat. Univ. Padova, Volume 49 (1973), pp. 9–123 | Numdam | MR | Zbl

[32] Foias, C.; Jolly, M.S.; Kravchenko, R.; Titi, E.S. A determining form for the 2D Navier–Stokes equations: the Fourier modes case, J. Math. Phys., Volume 53 (2012) | DOI | MR | Zbl

[33] Foias, C.; Jolly, M.S.; Kravchenko, R.; Titi, E.S. A unified approach to determining forms for the 2D Navier–Stokes equations – the general interpolants case, Usp. Mat. Nauk, Volume 69 (2014) no. 2, pp. 177–200 (Translation in Russ. Math. Surv., 69, 2, 2014, 359–381) | Zbl

[34] Foias, C.; Jolly, M.S.; Lan, R.; Rupam, R.; Yang, Y.; Zhang, B. Time analyticity with higher norm estimates for the 2D Navier–Stokes equations, IMA J. Appl. Math., Volume 80 (2015), pp. 766–810 | DOI | MR

[35] Foias, C.; Jolly, M.S.; Lithio, D.; Titi, E.S. One dimensional parametric determining form for the two-dimensional Navier–Stokes equations, J. Nonlinear Sci., Volume 27 (2017), pp. 1513–1529 | DOI | MR

[36] Foias, C.; Manley, O.; Rosa, R.; Temam, R. Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[37] Foias, C.; Mondaini, C.F.; Titi, E.S. A discrete data assimilation scheme for the solutions of the two-dimensional Navier–Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., Volume 15 (2016) no. 4, pp. 2109–2142 | DOI | MR

[38] Foias, C.; Prodi, G. Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2, Rend. Semin. Mat. Univ. Padova, Volume 39 (1967), pp. 1–34 | Numdam | MR | Zbl

[39] Foias, C.; Prodi, G. Sur les solutions statistiques des équations de Navier–Stokes, Ann. Mat. Pura Appl., Volume 111 (1976) no. 4, pp. 307–330 | MR | Zbl

[40] Foias, C.; Rosa, R.; Temam, R. A note on statistical solutions of the three-dimensional Navier–Stokes equations: the time-dependent case, C. R. Acad. Sci. Paris, Sér. 1, Volume 348 (2010) no. 3–4, pp. 235–240 | MR | Zbl

[41] Foias, C.; Rosa, R.; Temam, R. Propriétés des solutions statistiques des équations de Navier–Stokes tridimensionnelles dans le cas évolutif, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2515–2573 | DOI | Numdam | MR | Zbl

[42] Foias, C.; Sell, G.R.; Temam, R. Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equ., Volume 73 (1988) no. 2, pp. 309–353 | DOI | MR | Zbl

[43] Foias, C.; Sell, G.R.; Titi, E.S. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Differ. Equ., Volume 1 (1989) no. 2, pp. 199–244 | DOI | MR | Zbl

[44] Foias, C.; Temam, R. Determination of the solutions of the Navier–Stokes equations by a set of nodal values, Math. Comput., Volume 43 (1984), pp. 117–133 | DOI | MR | Zbl

[45] Foias, C.; Titi, E.S. Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, Volume 4 (1991), pp. 135–153 | DOI | MR | Zbl

[46] Gesho, M.; Olson, E.; Titi, E. A computational study of a data assimilation algorithm for the two dimensional Navier–Stokes equations, Commun. Comput. Phys., Volume 19 (2016) no. 4, pp. 1094–1110 | DOI | MR

[47] Ghil, M.; Halem, M.; Atlas, R. Time-continuous assimilation of remote-sounding data and its effect on weather forecasting, Mon. Weather Rev., Volume 107 (1978), pp. 140–171

[48] Ghil, M.; Shkoller, B.; Yangarber, V. A balanced diagnostic system compatible with a barotropic prognostic model, Mon. Weather Rev., Volume 105 (1977), pp. 1223–1238 | DOI

[49] Harlim, J.; Majda, A. Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[50] Hayden, K.; Olson, E.; Titi, E.S. Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations, Phys. D, Volume 240 (2011), pp. 1416–1425 | DOI | MR | Zbl

[51] Hoke, J.; Anthes, R. The initialization of numerical models by a dynamic relaxation technique, Mon. Weather Rev., Volume 104 (1976), pp. 1551–1556 | DOI

[52] Ibdah, H.A.; Mondaini, C.F.; Titi, E.S. Uniform in time error estimates for fully discrete numerical schemes of a data assimilation algorithm | arXiv | DOI | Zbl

[53] Jolly, M.S.; Martinez, V.; Sadigov, T.; Titi, E.S. A determining form for the subcritical surface quasi-geostrophic equation | arXiv | DOI | Zbl

[54] Jolly, M.S.; Sadigov, T.; Titi, E.S. A determining form for the damped driven nonlinear Schrödinger equation – Fourier modes case, J. Differ. Equ., Volume 258 (2015), pp. 2711–2744 | DOI | MR | Zbl

[55] Jolly, M.S.; Sadigov, T.; Titi, E.S. Determining form and data assimilation algorithm for weakly damped and driven Korteweg–de Vries equation – Fourier modes case, Nonlinear Anal., Real World Appl., Volume 36 (2017), pp. 287–317 | DOI | MR | Zbl

[56] Jones, D.A.; Titi, E.S. Upper bounds on the number of determining modes, nodes, and volume elements for the Navier–Stokes equations, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 875–887 | DOI | MR | Zbl

[57] Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, New York, 2003

[58] Kelley, J.L. General Topology, Graduate Texts in Mathematics, vol. 27, Springer-Verlag, 1975 | MR | Zbl

[59] Law, K.; Stuart, A.M.; Zygalakis, K.C. Data Assimilation – A Mathematical Introduction, Springer, 2015 | MR | Zbl

[60] Luenberger, D. An introduction to observers, IEEE Trans. Autom. Control, Volume 16 (1971), pp. 596–602 | DOI

[61] Lunasin, E.; Titi, E.S. Finite determining parameters feedback control for distributed nonlinear dissipative systems – a computational study, Evol. Equ. Control Theory, Volume 6 (2017) no. 4, pp. 535–557 | MR | Zbl

[62] Markowich, P.A.; Titi, E.S.; Trabelsi, S. Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model, Nonlinearity, Volume 29 (2016), pp. 1292–1328 | DOI | MR | Zbl

[63] Mondaini, C.F.; Titi, E.S. Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm, SIAM J. Numer. Anal., Volume 56 (2018) no. 1, pp. 78–110 | DOI | MR | Zbl

[64] Nijmeijer, H. A dynamic control view of synchronization, Physica D, Volume 154 (2001), pp. 219–228 | DOI | MR | Zbl

[65] Reich, S.; Cotter, C. Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, Cambridge, 2015 | DOI | MR | Zbl

[66] Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, SIAM, Philadelphia, PA, 1995 | MR | Zbl

[67] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997 | MR | Zbl

[68] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, North-Holland Publishing Co., Amsterdam–New York, 1984 (Reedition in the AMS Chelsea Series, 2001, AMS, Providence) | MR | Zbl

[69] Thau, F.E. Observing the state of non-linear dynamic systems, Int. J. Control, Volume 17 (1973), pp. 471–479 | Zbl

[70] Titi, E.S. On a criterion for locating stable stationary solutions to the Navier–Stokes equations, Nonlinear Anal. TMA, Volume 11 (1987), pp. 1085–1102 | MR | Zbl

[71] Vishik, M.I.; Fursikov, A.V. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier–Stokes equations, Sib. Math. J., Volume 19 (1978) no. 5, pp. 710–729 (Translated from Sib. Mat. Sb., 19, 5, September–October 1978, 1005–1031) | DOI | Zbl

[72] Vishik, M.I.; Fursikov, A.V. Mathematical Problems of Statistical Hydrodynamics, Kluwer, Dordrecht, 1988 | MR | Zbl

Cité par Sources :