Extremizers for Fourier restriction on hyperboloids
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 389-415.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The L2Lp adjoint Fourier restriction inequality on the d-dimensional hyperboloid HdRd+1 holds provided 6p<, if d=1, and 2(d+2)/dp2(d+1)/(d1), if d2. Quilodrán [35] recently found the values of the optimal constants in the endpoint cases (d,p){(2,4),(2,6),(3,4)} and showed that the inequality does not have extremizers in these cases. In this paper we answer two questions posed in [35], namely: (i) we find the explicit value of the optimal constant in the endpoint case (d,p)=(1,6) (the remaining endpoint for which p is an even integer) and show that there are no extremizers in this case; and (ii) we establish the existence of extremizers in all non-endpoint cases in dimensions d{1,2}. This completes the qualitative description of this problem in low dimensions.

DOI : 10.1016/j.anihpc.2018.06.001
Classification : 42B10
Mots-clés : Fourier restriction, Extremizers, Hyperboloid, Klein–Gordon equation
@article{AIHPC_2019__36_2_389_0,
     author = {Carneiro, Emanuel and Oliveira e Silva, Diogo and Sousa, Mateus},
     title = {Extremizers for {Fourier} restriction on hyperboloids},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {389--415},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.06.001},
     mrnumber = {3913191},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/}
}
TY  - JOUR
AU  - Carneiro, Emanuel
AU  - Oliveira e Silva, Diogo
AU  - Sousa, Mateus
TI  - Extremizers for Fourier restriction on hyperboloids
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 389
EP  - 415
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/
DO  - 10.1016/j.anihpc.2018.06.001
LA  - en
ID  - AIHPC_2019__36_2_389_0
ER  - 
%0 Journal Article
%A Carneiro, Emanuel
%A Oliveira e Silva, Diogo
%A Sousa, Mateus
%T Extremizers for Fourier restriction on hyperboloids
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 389-415
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/
%R 10.1016/j.anihpc.2018.06.001
%G en
%F AIHPC_2019__36_2_389_0
Carneiro, Emanuel; Oliveira e Silva, Diogo; Sousa, Mateus. Extremizers for Fourier restriction on hyperboloids. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 389-415. doi : 10.1016/j.anihpc.2018.06.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/

[1] Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1970

[2] Bennett, J.; Bez, N.; Carbery, A.; Hundertmark, D. Heat-flow monotonicity of Strichartz norms, Anal. PDE, Volume 2 (2009) no. 2, pp. 147–158 | DOI | MR | Zbl

[3] Bennett, J.; Bez, N.; Iliopoulou, M. Flow monotonicity and Strichartz inequalities, Int. Math. Res. Not. (2015) no. 19, pp. 9415–9437 | DOI | MR

[4] Bennett, J.; Bez, N.; Jeavons, C.; Pattakos, N. On sharp bilinear Strichartz estimates of Ozawa–Tsutsumi type, J. Math. Soc. Jpn., Volume 69 (2017) no. 2, pp. 459–476 | DOI | MR

[5] Bez, N.; Jeavons, C.; Ozawa, T. Some sharp bilinear space–time estimates for the wave equation, Mathematika, Volume 62 (2016) no. 3, pp. 719–737 | MR

[6] Bez, N.; Rogers, K. A sharp Strichartz estimate for the wave equation with data in the energy space, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 805–823 | MR | Zbl

[7] Bulut, A. Maximizers for the Strichartz inequalities for the wave equation, Differ. Integral Equ., Volume 23 (2010) no. 11–12, pp. 1035–1072 | MR | Zbl

[8] Candy, T. Multi-scale bilinear restriction estimates for general phases, 2017 (Preprint) | arXiv | MR

[9] Carleson, L.; Sjölin, P. Oscillatory integrals and a multiplier problem for the disc, Stud. Math., Volume 44 (1972), pp. 287–299 | DOI | MR | Zbl

[10] Carneiro, E. A sharp inequality for the Strichartz norm, Int. Math. Res. Not. (2009) no. 16, pp. 3127–3145 | DOI | MR | Zbl

[11] Carneiro, E.; Foschi, D.; Oliveira e Silva, D.; Thiele, C. A sharp trilinear inequality related to Fourier restriction on the circle, Rev. Mat. Iberoam., Volume 33 (2017) no. 4, pp. 1463–1486 | DOI | MR

[12] Carneiro, E.; Oliveira e Silva, D. Some sharp restriction inequalities on the sphere, Int. Math. Res. Not. (2015) no. 17, pp. 8233–8267 | DOI | MR

[13] Christ, M.; Quilodrán, R. Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids, Proc. Am. Math. Soc., Volume 142 (2014) no. 3, pp. 887–896 | DOI | MR | Zbl

[14] Christ, M.; Shao, S. Existence of extremals for a Fourier restriction inequality, Anal. PDE, Volume 5 (2012) no. 2, pp. 261–312 | DOI | MR | Zbl

[15] Christ, M.; Shao, S. On the extremizers of an adjoint Fourier restriction inequality, Adv. Math., Volume 230 (2012) no. 3, pp. 957–977 | DOI | MR | Zbl

[16] Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | DOI | MR | Zbl

[17] Fanelli, L.; Vega, L.; Visciglia, N. On the existence of maximizers for a family of restriction theorems, Bull. Lond. Math. Soc., Volume 43 (2011) no. 4, pp. 811–817 | DOI | MR | Zbl

[18] Fanelli, L.; Vega, L.; Visciglia, N. Existence of maximizers for Sobolev–Strichartz inequalities, Adv. Math., Volume 229 (2012) no. 3, pp. 1912–1923 | DOI | MR | Zbl

[19] Foschi, D. Maximizers for the Strichartz inequality, J. Eur. Math. Soc., Volume 9 (2007) no. 4, pp. 739–774 | DOI | MR | Zbl

[20] Foschi, D. Global maximizers for the sphere adjoint Fourier restriction inequality, J. Funct. Anal., Volume 268 (2015), pp. 690–702 | DOI | MR | Zbl

[21] Foschi, D.; Oliveira e Silva, D. Some recent progress in sharp Fourier restriction theory, Anal. Math., Volume 43 (2017) no. 2, pp. 241–265 | DOI | MR

[22] Frank, R.; Lieb, E.H.; Sabin, J. Maximizers for the Stein–Tomas inequality, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1095–1134 | DOI | MR

[23] Gonçalves, F. Orthogonal polynomials and sharp estimates for the Schrödinger equation, Int. Math. Res. Not. (2017) (Preprint in press) | arXiv | DOI | MR

[24] Hundertmark, D.; Shao, S. Analyticity of extremizers to the Airy–Strichartz inequality, Bull. Lond. Math. Soc., Volume 44 (2012) no. 2, pp. 336–352 | DOI | MR | Zbl

[25] Hundertmark, D.; Zharnitsky, V. On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. (2006) | DOI | MR | Zbl

[26] Jeavons, C. A sharp bilinear estimate for the Klein–Gordon equation in arbitrary space–time dimensions, Differ. Integral Equ., Volume 27 (2014) no. 1–2, pp. 137–156 | MR | Zbl

[27] Jiang, J.-C.; Shao, S.; Stovall, B. Linear profile decompositions for a family of fourth order Schrödinger equations, 2014 (Preprint) | arXiv

[28] Killip, R.; Stovall, B.; Visan, M. Scattering for the cubic Klein–Gordon equation in two space dimensions, Trans. Am. Math. Soc., Volume 364 (2012) no. 3, pp. 1571–1631 | DOI | MR | Zbl

[29] Kunze, M. On the existence of a maximizer for the Strichartz inequality, Commun. Math. Phys., Volume 243 (2003) no. 1, pp. 137–162 | DOI | MR | Zbl

[30] Oliveira e Silva, D. Extremals for Fourier restriction inequalities: convex arcs, J. Anal. Math., Volume 124 (2014), pp. 337–385 | DOI | MR | Zbl

[31] Oliveira e Silva, D. Nonexistence of extremizers for certain convex curves, Math. Res. Lett. (2012) (Preprint, 2018 in press) | arXiv | MR

[32] Oliveira e Silva, D.; Quilodrán, R. On extremizers for Strichartz estimates for higher order Schrödinger equations, Trans. Am. Math. Soc. (2016) (Preprint, 2018 in press) | arXiv | DOI | MR

[33] Ozawa, T.; Rogers, K. A sharp bilinear estimate for the Klein–Gordon equation in R1+1 , Int. Math. Res. Not. (2014) no. 5, pp. 1367–1378 | DOI | MR | Zbl

[34] Quilodrán, R. On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc. (2), Volume 87 (2013) no. 1, pp. 223–246 | DOI | MR | Zbl

[35] Quilodrán, R. Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid, J. Anal. Math., Volume 125 (2015), pp. 37–70 | DOI | MR

[36] Ramos, J. A refinement of the Strichartz inequality for the wave equation with applications, Adv. Math., Volume 230 (2012) no. 2, pp. 649–698 | DOI | MR | Zbl

[37] Shao, S. Maximizers for the Strichartz and the Sobolev–Strichartz inequalities for the Schrödinger equation, Electron. J. Differ. Equ., Volume 3 (2009) (13 pp) | MR | Zbl

[38] Shao, S. The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy–Strichartz inequality, Anal. PDE, Volume 2 (2009) no. 1, pp. 83–117 | DOI | MR | Zbl

[39] Shao, S. On existence of extremizers for the Tomas–Stein inequality for S1 , J. Funct. Anal., Volume 270 (2016), pp. 3996–4038 | DOI | MR

[40] Strichartz, R.S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705–714 | DOI | MR | Zbl

[41] Watson, G.N. A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966 | Zbl

Cité par Sources :