The adjoint Fourier restriction inequality on the d-dimensional hyperboloid holds provided , if , and , if . Quilodrán [35] recently found the values of the optimal constants in the endpoint cases and showed that the inequality does not have extremizers in these cases. In this paper we answer two questions posed in [35], namely: (i) we find the explicit value of the optimal constant in the endpoint case (the remaining endpoint for which p is an even integer) and show that there are no extremizers in this case; and (ii) we establish the existence of extremizers in all non-endpoint cases in dimensions . This completes the qualitative description of this problem in low dimensions.
Mots-clés : Fourier restriction, Extremizers, Hyperboloid, Klein–Gordon equation
@article{AIHPC_2019__36_2_389_0, author = {Carneiro, Emanuel and Oliveira e Silva, Diogo and Sousa, Mateus}, title = {Extremizers for {Fourier} restriction on hyperboloids}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {389--415}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.06.001}, mrnumber = {3913191}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/} }
TY - JOUR AU - Carneiro, Emanuel AU - Oliveira e Silva, Diogo AU - Sousa, Mateus TI - Extremizers for Fourier restriction on hyperboloids JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 389 EP - 415 VL - 36 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/ DO - 10.1016/j.anihpc.2018.06.001 LA - en ID - AIHPC_2019__36_2_389_0 ER -
%0 Journal Article %A Carneiro, Emanuel %A Oliveira e Silva, Diogo %A Sousa, Mateus %T Extremizers for Fourier restriction on hyperboloids %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 389-415 %V 36 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/ %R 10.1016/j.anihpc.2018.06.001 %G en %F AIHPC_2019__36_2_389_0
Carneiro, Emanuel; Oliveira e Silva, Diogo; Sousa, Mateus. Extremizers for Fourier restriction on hyperboloids. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 389-415. doi : 10.1016/j.anihpc.2018.06.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.06.001/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1970
[2] Heat-flow monotonicity of Strichartz norms, Anal. PDE, Volume 2 (2009) no. 2, pp. 147–158 | DOI | MR | Zbl
[3] Flow monotonicity and Strichartz inequalities, Int. Math. Res. Not. (2015) no. 19, pp. 9415–9437 | DOI | MR
[4] On sharp bilinear Strichartz estimates of Ozawa–Tsutsumi type, J. Math. Soc. Jpn., Volume 69 (2017) no. 2, pp. 459–476 | DOI | MR
[5] Some sharp bilinear space–time estimates for the wave equation, Mathematika, Volume 62 (2016) no. 3, pp. 719–737 | MR
[6] A sharp Strichartz estimate for the wave equation with data in the energy space, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 805–823 | MR | Zbl
[7] Maximizers for the Strichartz inequalities for the wave equation, Differ. Integral Equ., Volume 23 (2010) no. 11–12, pp. 1035–1072 | MR | Zbl
[8] Multi-scale bilinear restriction estimates for general phases, 2017 (Preprint) | arXiv | MR
[9] Oscillatory integrals and a multiplier problem for the disc, Stud. Math., Volume 44 (1972), pp. 287–299 | DOI | MR | Zbl
[10] A sharp inequality for the Strichartz norm, Int. Math. Res. Not. (2009) no. 16, pp. 3127–3145 | DOI | MR | Zbl
[11] A sharp trilinear inequality related to Fourier restriction on the circle, Rev. Mat. Iberoam., Volume 33 (2017) no. 4, pp. 1463–1486 | DOI | MR
[12] Some sharp restriction inequalities on the sphere, Int. Math. Res. Not. (2015) no. 17, pp. 8233–8267 | DOI | MR
[13] Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids, Proc. Am. Math. Soc., Volume 142 (2014) no. 3, pp. 887–896 | DOI | MR | Zbl
[14] Existence of extremals for a Fourier restriction inequality, Anal. PDE, Volume 5 (2012) no. 2, pp. 261–312 | DOI | MR | Zbl
[15] On the extremizers of an adjoint Fourier restriction inequality, Adv. Math., Volume 230 (2012) no. 3, pp. 957–977 | DOI | MR | Zbl
[16] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | DOI | MR | Zbl
[17] On the existence of maximizers for a family of restriction theorems, Bull. Lond. Math. Soc., Volume 43 (2011) no. 4, pp. 811–817 | DOI | MR | Zbl
[18] Existence of maximizers for Sobolev–Strichartz inequalities, Adv. Math., Volume 229 (2012) no. 3, pp. 1912–1923 | DOI | MR | Zbl
[19] Maximizers for the Strichartz inequality, J. Eur. Math. Soc., Volume 9 (2007) no. 4, pp. 739–774 | DOI | MR | Zbl
[20] Global maximizers for the sphere adjoint Fourier restriction inequality, J. Funct. Anal., Volume 268 (2015), pp. 690–702 | DOI | MR | Zbl
[21] Some recent progress in sharp Fourier restriction theory, Anal. Math., Volume 43 (2017) no. 2, pp. 241–265 | DOI | MR
[22] Maximizers for the Stein–Tomas inequality, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1095–1134 | DOI | MR
[23] Orthogonal polynomials and sharp estimates for the Schrödinger equation, Int. Math. Res. Not. (2017) (Preprint in press) | arXiv | DOI | MR
[24] Analyticity of extremizers to the Airy–Strichartz inequality, Bull. Lond. Math. Soc., Volume 44 (2012) no. 2, pp. 336–352 | DOI | MR | Zbl
[25] On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. (2006) | DOI | MR | Zbl
[26] A sharp bilinear estimate for the Klein–Gordon equation in arbitrary space–time dimensions, Differ. Integral Equ., Volume 27 (2014) no. 1–2, pp. 137–156 | MR | Zbl
[27] Linear profile decompositions for a family of fourth order Schrödinger equations, 2014 (Preprint) | arXiv
[28] Scattering for the cubic Klein–Gordon equation in two space dimensions, Trans. Am. Math. Soc., Volume 364 (2012) no. 3, pp. 1571–1631 | DOI | MR | Zbl
[29] On the existence of a maximizer for the Strichartz inequality, Commun. Math. Phys., Volume 243 (2003) no. 1, pp. 137–162 | DOI | MR | Zbl
[30] Extremals for Fourier restriction inequalities: convex arcs, J. Anal. Math., Volume 124 (2014), pp. 337–385 | DOI | MR | Zbl
[31] Nonexistence of extremizers for certain convex curves, Math. Res. Lett. (2012) (Preprint, 2018 in press) | arXiv | MR
[32] On extremizers for Strichartz estimates for higher order Schrödinger equations, Trans. Am. Math. Soc. (2016) (Preprint, 2018 in press) | arXiv | DOI | MR
[33] A sharp bilinear estimate for the Klein–Gordon equation in , Int. Math. Res. Not. (2014) no. 5, pp. 1367–1378 | DOI | MR | Zbl
[34] On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc. (2), Volume 87 (2013) no. 1, pp. 223–246 | DOI | MR | Zbl
[35] Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid, J. Anal. Math., Volume 125 (2015), pp. 37–70 | DOI | MR
[36] A refinement of the Strichartz inequality for the wave equation with applications, Adv. Math., Volume 230 (2012) no. 2, pp. 649–698 | DOI | MR | Zbl
[37] Maximizers for the Strichartz and the Sobolev–Strichartz inequalities for the Schrödinger equation, Electron. J. Differ. Equ., Volume 3 (2009) (13 pp) | MR | Zbl
[38] The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy–Strichartz inequality, Anal. PDE, Volume 2 (2009) no. 1, pp. 83–117 | DOI | MR | Zbl
[39] On existence of extremizers for the Tomas–Stein inequality for , J. Funct. Anal., Volume 270 (2016), pp. 3996–4038 | DOI | MR
[40] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705–714 | DOI | MR | Zbl
[41] A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966 | Zbl
Cité par Sources :