The
Mots-clés : Fourier restriction, Extremizers, Hyperboloid, Klein–Gordon equation
@article{AIHPC_2019__36_2_389_0, author = {Carneiro, Emanuel and Oliveira e Silva, Diogo and Sousa, Mateus}, title = {Extremizers for {Fourier} restriction on hyperboloids}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {389--415}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.06.001}, mrnumber = {3913191}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2018.06.001/} }
TY - JOUR AU - Carneiro, Emanuel AU - Oliveira e Silva, Diogo AU - Sousa, Mateus TI - Extremizers for Fourier restriction on hyperboloids JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 389 EP - 415 VL - 36 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2018.06.001/ DO - 10.1016/j.anihpc.2018.06.001 LA - en ID - AIHPC_2019__36_2_389_0 ER -
%0 Journal Article %A Carneiro, Emanuel %A Oliveira e Silva, Diogo %A Sousa, Mateus %T Extremizers for Fourier restriction on hyperboloids %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 389-415 %V 36 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2018.06.001/ %R 10.1016/j.anihpc.2018.06.001 %G en %F AIHPC_2019__36_2_389_0
Carneiro, Emanuel; Oliveira e Silva, Diogo; Sousa, Mateus. Extremizers for Fourier restriction on hyperboloids. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 389-415. doi : 10.1016/j.anihpc.2018.06.001. https://www.numdam.org/articles/10.1016/j.anihpc.2018.06.001/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1970
[2] Heat-flow monotonicity of Strichartz norms, Anal. PDE, Volume 2 (2009) no. 2, pp. 147–158 | DOI | MR | Zbl
[3] Flow monotonicity and Strichartz inequalities, Int. Math. Res. Not. (2015) no. 19, pp. 9415–9437 | DOI | MR
[4] On sharp bilinear Strichartz estimates of Ozawa–Tsutsumi type, J. Math. Soc. Jpn., Volume 69 (2017) no. 2, pp. 459–476 | DOI | MR
[5] Some sharp bilinear space–time estimates for the wave equation, Mathematika, Volume 62 (2016) no. 3, pp. 719–737 | MR
[6] A sharp Strichartz estimate for the wave equation with data in the energy space, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 805–823 | MR | Zbl
[7] Maximizers for the Strichartz inequalities for the wave equation, Differ. Integral Equ., Volume 23 (2010) no. 11–12, pp. 1035–1072 | MR | Zbl
[8] Multi-scale bilinear restriction estimates for general phases, 2017 (Preprint) | arXiv | MR
[9] Oscillatory integrals and a multiplier problem for the disc, Stud. Math., Volume 44 (1972), pp. 287–299 | DOI | MR | Zbl
[10] A sharp inequality for the Strichartz norm, Int. Math. Res. Not. (2009) no. 16, pp. 3127–3145 | DOI | MR | Zbl
[11] A sharp trilinear inequality related to Fourier restriction on the circle, Rev. Mat. Iberoam., Volume 33 (2017) no. 4, pp. 1463–1486 | DOI | MR
[12] Some sharp restriction inequalities on the sphere, Int. Math. Res. Not. (2015) no. 17, pp. 8233–8267 | DOI | MR
[13] Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids, Proc. Am. Math. Soc., Volume 142 (2014) no. 3, pp. 887–896 | DOI | MR | Zbl
[14] Existence of extremals for a Fourier restriction inequality, Anal. PDE, Volume 5 (2012) no. 2, pp. 261–312 | DOI | MR | Zbl
[15] On the extremizers of an adjoint Fourier restriction inequality, Adv. Math., Volume 230 (2012) no. 3, pp. 957–977 | DOI | MR | Zbl
[16] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | DOI | MR | Zbl
[17] On the existence of maximizers for a family of restriction theorems, Bull. Lond. Math. Soc., Volume 43 (2011) no. 4, pp. 811–817 | DOI | MR | Zbl
[18] Existence of maximizers for Sobolev–Strichartz inequalities, Adv. Math., Volume 229 (2012) no. 3, pp. 1912–1923 | DOI | MR | Zbl
[19] Maximizers for the Strichartz inequality, J. Eur. Math. Soc., Volume 9 (2007) no. 4, pp. 739–774 | DOI | MR | Zbl
[20] Global maximizers for the sphere adjoint Fourier restriction inequality, J. Funct. Anal., Volume 268 (2015), pp. 690–702 | DOI | MR | Zbl
[21] Some recent progress in sharp Fourier restriction theory, Anal. Math., Volume 43 (2017) no. 2, pp. 241–265 | DOI | MR
[22] Maximizers for the Stein–Tomas inequality, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1095–1134 | DOI | MR
[23] Orthogonal polynomials and sharp estimates for the Schrödinger equation, Int. Math. Res. Not. (2017) (Preprint in press) | arXiv | DOI | MR
[24] Analyticity of extremizers to the Airy–Strichartz inequality, Bull. Lond. Math. Soc., Volume 44 (2012) no. 2, pp. 336–352 | DOI | MR | Zbl
[25] On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. (2006) | DOI | MR | Zbl
[26] A sharp bilinear estimate for the Klein–Gordon equation in arbitrary space–time dimensions, Differ. Integral Equ., Volume 27 (2014) no. 1–2, pp. 137–156 | MR | Zbl
[27] Linear profile decompositions for a family of fourth order Schrödinger equations, 2014 (Preprint) | arXiv
[28] Scattering for the cubic Klein–Gordon equation in two space dimensions, Trans. Am. Math. Soc., Volume 364 (2012) no. 3, pp. 1571–1631 | DOI | MR | Zbl
[29] On the existence of a maximizer for the Strichartz inequality, Commun. Math. Phys., Volume 243 (2003) no. 1, pp. 137–162 | DOI | MR | Zbl
[30] Extremals for Fourier restriction inequalities: convex arcs, J. Anal. Math., Volume 124 (2014), pp. 337–385 | DOI | MR | Zbl
[31] Nonexistence of extremizers for certain convex curves, Math. Res. Lett. (2012) (Preprint, 2018 in press) | arXiv | MR
[32] On extremizers for Strichartz estimates for higher order Schrödinger equations, Trans. Am. Math. Soc. (2016) (Preprint, 2018 in press) | arXiv | DOI | MR
[33] A sharp bilinear estimate for the Klein–Gordon equation in
[34] On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc. (2), Volume 87 (2013) no. 1, pp. 223–246 | DOI | MR | Zbl
[35] Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid, J. Anal. Math., Volume 125 (2015), pp. 37–70 | DOI | MR
[36] A refinement of the Strichartz inequality for the wave equation with applications, Adv. Math., Volume 230 (2012) no. 2, pp. 649–698 | DOI | MR | Zbl
[37] Maximizers for the Strichartz and the Sobolev–Strichartz inequalities for the Schrödinger equation, Electron. J. Differ. Equ., Volume 3 (2009) (13 pp) | MR | Zbl
[38] The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy–Strichartz inequality, Anal. PDE, Volume 2 (2009) no. 1, pp. 83–117 | DOI | MR | Zbl
[39] On existence of extremizers for the Tomas–Stein inequality for
[40] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705–714 | DOI | MR | Zbl
[41] A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966 | Zbl
- On profile decomposition for Airy type equation, Journal of Differential Equations, Volume 422 (2025), p. 562 | DOI:10.1016/j.jde.2025.01.016
- On extremizing sequences for adjoint Fourier restriction to the sphere, Advances in Mathematics, Volume 453 (2024), p. 109854 | DOI:10.1016/j.aim.2024.109854
- Sharp Fourier Extension on Fractional Surfaces, Journal of Fourier Analysis and Applications, Volume 30 (2024) no. 4 | DOI:10.1007/s00041-024-10099-7
- Existence of Extremals for a Fourier Restriction Inequality on the One-Sheeted Hyperboloid, Journal of Fourier Analysis and Applications, Volume 30 (2024) no. 4 | DOI:10.1007/s00041-024-10090-2
- Stability of Sharp Fourier Restriction to Spheres, Journal of Fourier Analysis and Applications, Volume 30 (2024) no. 6 | DOI:10.1007/s00041-024-10120-z
- Some sharp null-form type estimates for the Klein–Gordon equation, Journal of the Mathematical Society of Japan, Volume 75 (2023) no. 2 | DOI:10.2969/jmsj/86418641
- Global restriction estimates for elliptic hyperboloids, Mathematische Zeitschrift, Volume 301 (2022) no. 2, p. 2111 | DOI:10.1007/s00209-022-02988-8
- Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates, Forum of Mathematics, Sigma, Volume 9 (2021) | DOI:10.1017/fms.2020.64
- Sharp Strichartz inequalities for fractional and higher-order Schrödinger equations, Analysis PDE, Volume 13 (2020) no. 2, p. 477 | DOI:10.2140/apde.2020.13.477
- A comparison principle for convolution measures with applications, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 169 (2020) no. 2, p. 307 | DOI:10.1017/s0305004119000197
- Bilinear identities involving thek-plane transform and Fourier extension operators, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3349 | DOI:10.1017/prm.2019.74
Cité par 11 documents. Sources : Crossref