We consider a class of one dimensional compressible systems with degenerate diffusion coefficients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish, and give local and global existence results. The models include the barotropic compressible Navier-Stokes equations, shallow water systems and the lubrication approximation of slender jets. In all these models the momentum equation is forced by the gradient of a solution-dependent potential: the active potential. The method of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.
Mots-clés : Compressible flow, Shallow water, Slender jet, Global existence
@article{AIHPC_2020__37_1_145_0, author = {Constantin, Peter and Drivas, Theodore D. and Nguyen, Huy Q. and Pasqualotto, Federico}, title = {Compressible fluids and active potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {145--180}, publisher = {Elsevier}, volume = {37}, number = {1}, year = {2020}, doi = {10.1016/j.anihpc.2019.04.001}, mrnumber = {4049919}, zbl = {1430.35185}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.001/} }
TY - JOUR AU - Constantin, Peter AU - Drivas, Theodore D. AU - Nguyen, Huy Q. AU - Pasqualotto, Federico TI - Compressible fluids and active potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 145 EP - 180 VL - 37 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.001/ DO - 10.1016/j.anihpc.2019.04.001 LA - en ID - AIHPC_2020__37_1_145_0 ER -
%0 Journal Article %A Constantin, Peter %A Drivas, Theodore D. %A Nguyen, Huy Q. %A Pasqualotto, Federico %T Compressible fluids and active potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 145-180 %V 37 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.001/ %R 10.1016/j.anihpc.2019.04.001 %G en %F AIHPC_2020__37_1_145_0
Constantin, Peter; Drivas, Theodore D.; Nguyen, Huy Q.; Pasqualotto, Federico. Compressible fluids and active potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 145-180. doi : 10.1016/j.anihpc.2019.04.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.001/
[1] Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst., Ser. B, Volume 1 (2001) no. 1, pp. 89–102 | MR | Zbl
[2] Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, Eur. J. Mech. B, Fluids, Volume 26 (2007) no. 1, pp. 49–63 | DOI | MR | Zbl
[3] Drop formation in a one-dimensional approximation of the Navier-Stokes equation, J. Fluid Mech., Volume 262 (1994), pp. 205–221 | DOI | MR | Zbl
[4] Singularities: Formation, Structure, and Propagation, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2015 (xvi+453 pp) | MR
[5] Cascades and dissipative anomalies in compressible fluid turbulence, Phys. Rev. X, Volume 8 (2018) no. 1
[6] Non-formation of vacuum states for compressible Navier-Stokes equations, Commun. Math. Phys., Volume 216 (2001) no. 2, pp. 255–276 | DOI | MR | Zbl
[7] Existence and uniqueness of a classical solution of an initial-boundary value problem of the theory of shallow waters, SIAM J. Math. Anal., Volume 12 (1981) no. 2, pp. 229–241 | MR | Zbl
[8] On classical solutions to 2D shallow water equations with degenerate viscosities, J. Math. Fluid Mech., Volume 19 (2017) no. 1, pp. 151–190 | MR | Zbl
[9] The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., Volume 20 (1980) no. 1, pp. 67–104 | MR | Zbl
[10] Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys., Volume 89 (1983) no. 4, pp. 445–464 | DOI | MR | Zbl
[11] Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D, Math. Nachr., Volume 291 (2018) no. 14–15, pp. 2188–2203 | MR | Zbl
[12] Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., Volume 39 (2007/2008) no. 4, pp. 1344–1365 | DOI | MR | Zbl
[13] Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl., Volume 202 (1996) no. 1, pp. 236–258 | DOI | MR | Zbl
[14] Global existence for the Cauchy problem for the viscous shallow water equations, Rocky Mt. J. Math., Volume 28 (1998) no. 3, pp. 1135–1152 | DOI | MR | Zbl
[15] Global existence of classical solutions in the dissipative shallow water equations, SIAM J. Math. Anal., Volume 16 (1985) no. 2, pp. 301–315 | DOI | MR | Zbl
[16] On singularity formation in a Hele-Shaw model, Commun. Math. Phys., Volume 363 (2018) no. 1, pp. 139–171 | DOI | MR | Zbl
[17] Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ., Volume 120 (1995) no. 1, pp. 215–254 | DOI | MR | Zbl
[18] Mathematical Topics in Fluid Dynamics, vol. 2 – Compressible Models, Oxford Science Publication, Oxford, 1998 | MR | Zbl
[19] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1, pp. 211–223 | DOI | MR | Zbl
[20] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., Volume 28 (2003) no. 3–4, pp. 843–868 | MR | Zbl
[21] Recent mathematical results and open problems about shallow water equations, Analysis and Simulation of Fluid Dynamics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2007, pp. 15–31 | MR | Zbl
[22] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, New York, 2011 | DOI | MR | Zbl
[23] Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891–907 | DOI | MR | Zbl
Cité par Sources :