One of the most challenging questions in fluid dynamics is whether the three-dimensional (3D) incompressible Navier-Stokes, 3D Euler and two-dimensional Quasi-Geostrophic (2D QG) equations can develop a finite-time singularity from smooth initial data. Recently, from a numerical point of view, Luo & Hou presented a class of potentially singular solutions to the Euler equations in a fluid with solid boundary [1, 2]. Furthermore, in two recent papers [3, 4], Tao indicates a significant barrier to establishing global regularity for the 3D Euler and Navier-Stokes equations, in that any method for achieving this, must use the finer geometric structure of these equations. In this paper, we show that the singularity discovered by Luo & Hou which lies right on the boundary is not relevant in the case of the whole domain . We reveal also that the translation and rotation invariance present in the Euler, Navier-Stokes and 2D QG equations are the key for the non blow-up in finite time of the solutions. The translation and rotation invariance of these equations combined with the anisotropic structure of regions of high vorticity allowed to establish a new geometric non blow-up criterion which yield us to the non blow-up of the solutions in all the Kerr's numerical experiments and to show that the potential mechanism of blow-up introduced in [5] cannot lead to the blow-up in finite time of solutions of Euler equations.
Mots-clés : 3D Euler equations, 3D Navier-Stokes equations, 2D Quasi-Geostrophic equation, Finite time singularities, Geometric properties for non blow-up
@article{AIHPC_2019__36_6_1503_0, author = {Ag\'elas, L\'eo}, title = {A new path to the non blow-up of incompressible flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1503--1537}, publisher = {Elsevier}, volume = {36}, number = {6}, year = {2019}, doi = {10.1016/j.anihpc.2019.04.003}, mrnumber = {4002165}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.003/} }
TY - JOUR AU - Agélas, Léo TI - A new path to the non blow-up of incompressible flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1503 EP - 1537 VL - 36 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.003/ DO - 10.1016/j.anihpc.2019.04.003 LA - en ID - AIHPC_2019__36_6_1503_0 ER -
%0 Journal Article %A Agélas, Léo %T A new path to the non blow-up of incompressible flows %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1503-1537 %V 36 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.003/ %R 10.1016/j.anihpc.2019.04.003 %G en %F AIHPC_2019__36_6_1503_0
Agélas, Léo. A new path to the non blow-up of incompressible flows. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1503-1537. doi : 10.1016/j.anihpc.2019.04.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.04.003/
[1] Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Natl. Acad. Sci., Volume 111 (2014) no. 36, pp. 12968–12973
[2] Toward the finite time blowup of the 3D axisymmetric Euler equations: a numerical investigation, Multiscale Model. Simul., Volume 12 (2014) no. 4, pp. 1722–1776 | MR
[3] Finite time blow-up for an averaged three-dimensional Navier-Stokes equations, J. Am. Math. Soc., Volume 29 (2016), pp. 601–674 | MR
[4] Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation, Ann. Partial Differ. Equ., Volume 2 (2016) no. 9 | MR
[5] Potential singularity mechanism for the Euler equations, Phys. Rev. Fluids, Volume 1 (2016) no. 084503
[6] On the Euler equations of incompressible fluids, Bull. Am. Math. Soc., Volume 44 (2007), pp. 603–621 | DOI | MR | Zbl
[7] Euler equations for an ideal incompressible fluid, Usp. Mat. Nauk, Volume 62 (2007) no. 3, pp. 5–46 | MR | Zbl
[8] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–248 | DOI | JFM | MR
[9] Über die anfangwertaufgabe für die hydrohynamischen grundgleichungen, Math. Nachr., Volume 4 (1951), pp. 213–231 | MR | Zbl
[10] The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, 1969 | MR | Zbl
[11] Un théorème d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2, C. R. Math. Acad. Sci. Paris, Volume 248 (1959), pp. 3519–3521 | MR | Zbl
[12] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969 | MR | Zbl
[13] Navier-Stokes Equations, North-Holland, Amsterdam, 1977 | MR | Zbl
[14] Unicité dans et d'autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoam., Volume 16 (2000) no. 3 | DOI | MR | Zbl
[15] Weak and strong solutions of the Navier-Stokes initial value problem, RIMS Kokyuroku Univ., Volume 19 (1983), pp. 887–910 | MR | Zbl
[16] Unicité dans des solutions du système de Navier-Stokes: cas des domaines lipschitziens, Ann. Math. Blaise Pascal, Volume 10 (2000), pp. 107–116 | Numdam | MR | Zbl
[17] Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-stokes, Rend. Semin. Mat. Univ. Padova, Volume 30 (1960), pp. 16–23 | Numdam | MR | Zbl
[18] On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Ration. Mech. Anal., Volume 161 (2002), pp. 307–337 | DOI | MR | Zbl
[19] On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 187–191 | DOI | MR | Zbl
[20] , Proc. Symposia in Pure Mathematics, Volume vol. 45, Amer. Math. Soc., Providence, Rhode Island (1983), pp. 497–503 | MR | Zbl
[21] Solutions for semilinear parabolic equations in and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., Volume 62 (1986), pp. 186–212 | DOI | MR | Zbl
[22] -solutions of Navier-Stokes equations and backward uniqueness, Usp. Mat. Nauk, Volume 58 (2003) no. 2, pp. 3–44 | MR | Zbl
[23] Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differ. Equ., Volume 29 (2002), pp. 1–13 | MR | Zbl
[24] Epochs of regularity for weak solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., Volume 40 (1988), pp. 293–313 | DOI | MR | Zbl
[25] Strong solutions of the Navier-Stokes equations in , with application to weak solutions, Math. Z., Volume 187 (1984), pp. 471–480 | DOI | MR | Zbl
[26] Liapunov functions and monotonicity in the Navier-Stokes equations, Lect. Notes Math., Volume 1450 (1990), pp. 53–63 | DOI | MR | Zbl
[27] A new regularity class for the Navier-Stokes equations in , Chin. Ann. Math., Ser. B, Volume 16 (1995) no. 4, pp. 407–412 | MR | Zbl
[28] Regularity of solutions to the Navier-Stokes equations, Electron. J. Differ. Equ., Volume 5 (1999), pp. 1–7 | MR | Zbl
[29] A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., Volume 9 (2002) no. 4, pp. 563–578 | DOI | MR | Zbl
[30] Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., Volume 42 (1994), pp. 775–789 | MR | Zbl
[31] Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., Volume 6 (1963) no. 3, pp. 1032–1066 | MR | Zbl
[32] Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., Volume 2 (1995) no. 1, pp. 27–38 | DOI | MR | Zbl
[33] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 6, pp. 769–812 | Numdam | MR | Zbl
[34] Commun. Math. Phys., 108 (1987) no. 4, pp. 667–689 | DOI | MR | Zbl
[35] The -principle and the equations of fluid dynamics, Bull. Am. Math. Soc., Volume 49 (2012) no. 3, pp. 347–375 | MR | Zbl
[36] Paradoxe de Scheffer-Shnirelman revu sous l'angle de l'intégration convexe, Séminaire Bourbaki 61e Année, vol. 1001, 2008 (D'après C. de Lellis et L. Székelyhidi) | Numdam | MR | Zbl
[37] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., Volume 94 (1984) no. 1, pp. 61–66 | DOI | MR | Zbl
[38] Remarks on a paper by J. T. Beale, T. Kato, and A. Majda, Commun. Math. Phys., Volume 98 (1985), pp. 349–353 | DOI | MR | Zbl
[39] On the blow-up of solutions of the 3-D Euler equations in a bounded domain, Commun. Math. Phys., Volume 155 (1993), pp. 277–294 | DOI | MR | Zbl
[40] A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 69 (1993), pp. 77–82 | DOI | MR | Zbl
[41] Geometric constraints on potentially singular solutions for the 3-D Euler equation, Commun. Partial Differ. Equ., Volume 21 (1996), pp. 559–571 | MR | Zbl
[42] Geometric properties and non-blow-up of 3-D incompressible Euler flow, Commun. Partial Differ. Equ., Volume 30 (2005) no. 1, pp. 225–243 | MR | Zbl
[43] The 3D incompressible Euler equations with a passive scalar: a road to blow-up?, J. Nonlinear Sci., Volume 23 (2013), pp. 993–1000 | DOI | MR | Zbl
[44] Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1–20 | MR | Zbl
[45] Geophysical Fluid Dynamics, Springer, New York, 1987 | DOI | Zbl
[46] Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar, Nonlinearity, Volume 7 (1994), pp. 1495–1533 | DOI | MR | Zbl
[47] Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math., Volume 148 (1998), pp. 1135–1152 | DOI | MR | Zbl
[48] Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., Volume 15 (2002), pp. 665–670 | DOI | MR | Zbl
[49] The quasi-geostrophic equation in the Triebel-Lizorkin spaces, Nonlinearity, Volume 16 (2003), pp. 479–495 | DOI | MR | Zbl
[50] Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow, Phys. Fluids, Volume 9 (1997) no. 4, pp. 876–882 | DOI | MR | Zbl
[51] New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput., Volume 50 (2012) no. 1, pp. 1–28 | DOI | MR | Zbl
[52] Deformation and symmetry in the inviscid SQG and the 3D Euler equations, J. Nonlinear Sci., Volume 22 (2012) no. 5, pp. 665–688 | DOI | MR | Zbl
[53] Finite time blow up for a Navier-Stokes like equation, Proc. Am. Math. Soc., Volume 129 (2001) no. 10, pp. 3025–3029 | DOI | MR | Zbl
[54] Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations, Proc. Am. Math. Soc., Volume 137 (2009) no. 6, pp. 2075–2083 | DOI | MR | Zbl
[55] Blow ups of complex solutions of the 3D-Navier-Stokes system and renormalization group method, J. Eur. Math. Soc., Volume 10 (2008) no. 2, pp. 267–313 | MR | Zbl
[56] Singular and regular solutions of a nonlinear parabolic system, Nonlinearity, Volume 16 (2003) no. 6, pp. 2083–2097 | MR | Zbl
[57] Finite time blow-up for a dyadic model of the Euler equations, Trans. Am. Math. Soc., Volume 357 (2005) no. 2, pp. 695–708 | MR | Zbl
[58] Gauge principle and variational formulation for flows of an ideal fluid, Acta Mech. Sin., Volume 19 (2003) no. 5, pp. 437–452 | MR
[59] Gauge principle for flows of an ideal fluid, Fluid Dyn. Res., Volume 32 (2003), pp. 193–199 | DOI | MR | Zbl
[60] Geometric statistic in turbulence, SIAM Rev., Volume 36 (1994) no. 1, pp. 73–98 | DOI | MR | Zbl
[61] Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differ. Equ., Volume 246 (2009), pp. 597–628 | DOI | MR | Zbl
[62] Some geometric constraints and the problem of global regularity for the Navier-Stokes equations, Nonlinearity, Volume 22 (2009) no. 10, pp. 2561–2581 | DOI | MR | Zbl
[63] Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Commun. Pure Appl. Math., Volume 61 (2008), pp. 661–697 | MR | Zbl
[64] Improved geometric conditions for non-blow-up of 3D incompressible Euler equation, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 293–306 | DOI | MR | Zbl
[65] Level set dynamics and the non-blow-up of the 2D quasi-geostrophic equation, Methods Appl. Anal., Volume 13 (2006) no. 2, pp. 157–180 | DOI | MR | Zbl
[66] Exploring symmetry plane conditions in numerical Euler solutions, Mathematical Aspects of Fluid Mechanics, Cambridge University Press, 2012 | MR | Zbl
[67] Finite-Time Euler Singularities: A Lagrangian Perspective, 2012 (PhD thesis in der Fakultät für Physik und Astronomie der Ruhr-Universität Bochum)
[68] Necessary Conditions for an Extremum, Marcel Dekker, Inc., New York, NY, 1971 (Translated from Russian 1969) | MR | Zbl
[69] Velocity and scaling of collapsing Euler vortices, Phys. Fluids, Volume 14 (2005) no. 075103 | MR | Zbl
[70] The outer regions in singular Euler, Fundamental Problematic Issues in Turbulence, Birkhäuser, Boston, 1998 | MR | Zbl
[71] Euler singularities and turbulence, 19th ICTAM Kyoto '96, Elsevier Science, 1997
[72] Collapse of vortex lines in hydrodynamics, J. Exp. Theor. Phys., Volume 91 (2000) no. 4, pp. 775–785 | DOI
[73] Numerical evidence of breaking of vortex lines in an ideal fluid, Tubes, Sheets and Singularities in Fluid Dynamics, Kluwer Academic Publishers, NATO ARW, 2001, pp. 305–316 | MR | Zbl
[74] Development of high vorticity structures in incompressible 3D Euler equations, Phys. Fluids, Volume 27 (2015) no. 085102
[75] Asymptotic solution for high-vorticity regions in incompressible three-dimensional Euler equations, J. Fluid Mech., Volume 813 (2017) | DOI | MR
[76] Finite-time Euler singularities: a Lagrangian perspective, Appl. Math. Lett., Volume 26 (2013), pp. 500–505 | DOI | MR | Zbl
[77] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[78] Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891–907 | DOI | MR | Zbl
[79] Remarks on the Euler equation, J. Funct. Anal., Volume 15 (1974), pp. 341–363 | DOI | MR | Zbl
[80] Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces , Rev. Mat. Iberoam., Volume 2 (1986), pp. 73–88 | DOI | MR | Zbl
[81] Bilinear estimates and critical Sobolev inequality in BMO, with applications to the Navier-Stokes and the Euler equations, RIMS Kokyuroku, Volume 1146 (2000), pp. 39–52 | MR | Zbl
[82] Global regularity for logarithmically critical 2D MHD equations with zero viscosity, Monatshefte Math., Volume 181 (2016) no. 2, pp. 245–266 | DOI | MR
[83] On the collapse of tubes carried by 3D incompressible flows, Comment. Phys.-Math., Volume 222 (2001), pp. 293–298 | MR | Zbl
[84] Evidence for a singularity of the three-dimensional incompressible Euler equations, Phys. Fluids A, Volume 5 (1993), pp. 1725–1746 | MR | Zbl
[85] The role of singularities in Euler, Small-Scale Structure in Hydro and Magnetohydrodynamic Turbulence, Lecture Notes, Springer-Verlag, 1995
[86] Locally self-similar, finite-time collapse in a high-symmetry vortex filament model, Phys. Rev. E, Volume 55 (1997) no. 2, pp. 1617–1620
[87] Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech., Volume 444 (2001), pp. 299–320 | MR | Zbl
[88] Directional derivatives of the maximum function, Cybern. Syst. Anal., Volume 28 (1992) no. 2, pp. 309–312 | DOI | MR | Zbl
[89] A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1993 | MR | Zbl
[90] Cross-linking of two antiparallel vortex tubes, Phys. Fluids, Volume 1 (1989), pp. 633–636 | DOI
[91] Simulation of vortex reconnection, Physica D, Volume 37 (1989), pp. 474–484
[92] Collapsing solutions to the 3-D Euler equations, Phys. Fluids A, Volume 2 (1990), pp. 220–241 | DOI | MR | Zbl
[93] Adaptive mesh refinement for singular solutions of the incompressible Euler equations, Phys. Rev. Fluids, Volume 80 (1998), pp. 4177–4180
[94] Dynamic depletion of vortex stretching and non-blow-up of the 3-D incompressible Euler equations, J. Nonlinear Sci., Volume 16 (2006), pp. 639–664 | MR | Zbl
[95] R.M. Kerr, Computational Euler history, 2006.
[96] Absence of singular stretching of interacting vortex filaments, J. Fluid Mech., Volume 707 (2012), pp. 191–204 | DOI | MR | Zbl
[97] Vorticity and Incompressible Flow, Cambridge Univ. Press, 2002 | MR | Zbl
[98] Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, vol. 140, Amer. Math. Soc., 2012 | DOI | MR | Zbl
[99] Shape derivatives for general objective functions and the incompressible Navier-Stokes equations, Control Cybern., Volume 39 (2010) no. 3 | MR | Zbl
[100] Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Siam, 2011 | MR | Zbl
[101] Elements of Vorticity Aerodynamics, Springer Tracts in Mechanical Engineering, vol. 140, Springer-Verlag, Berlin, Heidelberg, 2018 | DOI
Cité par Sources :