We study the convergence to equilibrium for the full compressible Navier-Stokes equations on the torus
Mots-clés : Convergence to equilibrium, Global smooth solutions, Full compressible Navier-Stokes equations
@article{AIHPC_2020__37_2_457_0, author = {Zhang, Zhifei and Zi, Ruizhao}, title = {Convergence to equilibrium for the solution of the full compressible {Navier-Stokes} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {457--488}, publisher = {Elsevier}, volume = {37}, number = {2}, year = {2020}, doi = {10.1016/j.anihpc.2019.09.001}, mrnumber = {4072802}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.001/} }
TY - JOUR AU - Zhang, Zhifei AU - Zi, Ruizhao TI - Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 457 EP - 488 VL - 37 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.001/ DO - 10.1016/j.anihpc.2019.09.001 LA - en ID - AIHPC_2020__37_2_457_0 ER -
%0 Journal Article %A Zhang, Zhifei %A Zi, Ruizhao %T Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 457-488 %V 37 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.001/ %R 10.1016/j.anihpc.2019.09.001 %G en %F AIHPC_2020__37_2_457_0
Zhang, Zhifei; Zi, Ruizhao. Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 457-488. doi : 10.1016/j.anihpc.2019.09.001. https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.001/
[1] Quelques modèles diffusifs capillaires de type Korteweg, C. R. Mecanique, Volume 332 (2004), pp. 881–886 | DOI | Zbl
[2] On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., Volume 86 (2006), pp. 362–368 | DOI | MR | Zbl
[3] On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., Volume 87 (2007), pp. 57–90 | DOI | MR | Zbl
[4] Solution of some vector analysis problems connected with operators div and grad, Tr. Semin. S.L. Soboleva, Volume 80 (1980), pp. 5–40 (in Russian) | MR | Zbl
[5] Existence results for viscous polytropic fluids with vacuum, J. Differ. Equ., Volume 228 (2006), pp. 377–411 | MR | Zbl
[6] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., Volume 159 (2005), pp. 245–316 | DOI | MR | Zbl
[7] Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Models Methods Appl. Sci., Volume 17 (2007), pp. 737–758 | DOI | MR | Zbl
[8] A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., Volume 75 (2012), pp. 3130–3141 | DOI | MR | Zbl
[9] Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain, J. Math. Anal. Appl., Volume 386 (2012), pp. 939–947 | DOI | MR | Zbl
[10] On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., Volume 3 (2001), pp. 358–392 | DOI | MR | Zbl
[11] Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004 | Zbl
[12] An Introduction to the Mathematical Theory of the Navier-Stokes Equations, i, Springer-Verlag, New York, 1994 | Zbl
[13] Global stability of large solutions to the 3D compressible Navier-Stokes equations | arXiv
[14] Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ., Volume 120 (1995), pp. 215–254 | DOI | MR | Zbl
[15] Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Ration. Mech. Anal., Volume 139 (1997), pp. 303–354 | DOI | MR | Zbl
[16] Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., Volume 227 (2018), pp. 995–1059 | DOI | MR
[17] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations, Bull. Soc. Math. Fr., Volume 127 (1999), pp. 473–517 | Numdam | MR | Zbl
[18] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., Volume 34 (1981), pp. 481–524 | DOI | MR | Zbl
[19] Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in
[20] Mathematical Topics in Fluid Mechanics, Vols. 2, Compressible Models, Oxford Science Publication, Oxford, 1998 | MR | Zbl
[21] The initial value problem for the equation of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser., Volume 55 (1979), pp. 337–342 | MR | Zbl
[22] The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., Volume 20 (1980), pp. 67–104 | MR | Zbl
[23] Computing Methods in Applied Sciences and Engineering, vol. V, Initial-boundary value problems for the equations of motion of general fluids, North-Holland, Amsterdam (1982), pp. 389–406 (Versailles, 1981) | MR | Zbl
[24] Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 487–497 | Numdam | MR | Zbl
[25] Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., Volume 9 (1985), pp. 339–418 | DOI | MR | Zbl
[26] On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal., Volume 3 (1959), pp. 271–288 | DOI | MR | Zbl
[27] A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 727–742 | MR | Zbl
[28] Hypocoercivity, Mem. Am. Math. Soc., Volume 202 (2009) | MR | Zbl
[29] Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., Volume 248 (2013), pp. 534–572 | MR | Zbl
[30] Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data, SIAM J. Math. Anal., Volume 49 (2017), pp. 162–221 | MR
Cité par Sources :