Well-posedness issues on the periodic modified Kawahara equation
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 373-416.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with the Cauchy problem of the modified Kawahara equation (posed on T), which is well-known as a model of capillary-gravity waves in an infinitely long canal over a flat bottom in a long wave regime [26]. We show in this paper some well-posedness results, mainly the global well-posedness in L2(T). The proof basically relies on the idea introduced in Takaoka-Tsutsumi's works [60, 69], which weakens the non-trivial resonance in the cubic interactions (a kind of smoothing effect) for the local result, and the global well-posedness result immediately follows from L2 conservation law. An immediate application of Takaoka-Tsutsumi's idea is available only in Hs(T), s>0, due to the lack of L4-Strichartz estimate for arbitrary L2 data, a slight modification, thus, is needed to attain the local well-posedness in L2(T). This is the first low regularity (global) well-posedness result for the periodic modified Kwahara equation, as far as we know. A direct interpolation argument ensures the unconditional uniqueness in Hs(T), s>12, and as a byproduct, we show the weak ill-posedness below H12(T), in the sense that the flow map fails to be uniformly continuous.

DOI : 10.1016/j.anihpc.2019.09.002
Classification : 35Q53, 76B15, 35G25
Mots-clés : Modified Kawahara equation, Initial value problem, Global well-posedness, Unconditional uniqueness, Weak ill-posedness
Kwak, Chulkwang 1, 2

1 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile
2 Institute of Pure and Applied Mathematics, Chonbuk National University, Republic of Korea
@article{AIHPC_2020__37_2_373_0,
     author = {Kwak, Chulkwang},
     title = {Well-posedness issues on the periodic modified {Kawahara} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {373--416},
     publisher = {Elsevier},
     volume = {37},
     number = {2},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.09.002},
     mrnumber = {4072803},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.09.002/}
}
TY  - JOUR
AU  - Kwak, Chulkwang
TI  - Well-posedness issues on the periodic modified Kawahara equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 373
EP  - 416
VL  - 37
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.09.002/
DO  - 10.1016/j.anihpc.2019.09.002
LA  - en
ID  - AIHPC_2020__37_2_373_0
ER  - 
%0 Journal Article
%A Kwak, Chulkwang
%T Well-posedness issues on the periodic modified Kawahara equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 373-416
%V 37
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.09.002/
%R 10.1016/j.anihpc.2019.09.002
%G en
%F AIHPC_2020__37_2_373_0
Kwak, Chulkwang. Well-posedness issues on the periodic modified Kawahara equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 373-416. doi : 10.1016/j.anihpc.2019.09.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.09.002/

[1] Abramyan, L.; Stepanyants, Y. The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP, Volume 61 (1985) no. 5, pp. 963–966

[2] Babin, A.; Ilyin, A.; Titi, E. On the regularization mechanism for the periodic Korteweg-de Vries equation, Commun. Pure Appl. Math., Volume 64 (2011) no. 5, pp. 591–648 | DOI | MR | Zbl

[3] Benney, D.J. A general theory for interactions between short and long waves, Stud. Appl. Math., Volume 56 (1977), pp. 81–94 | DOI | MR | Zbl

[4] Bejenaru, J.; Tao, T. Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., Volume 233 (2006), pp. 228–259 | DOI | MR | Zbl

[5] Biswas, A. Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., Volume 22 (2009) no. 2, pp. 208–210 | DOI | MR | Zbl

[6] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I, II, Geom. Funct. Anal., Volume 3 (1993), pp. 107–156 (209–262) | DOI | MR | Zbl

[7] Bourgain, J. Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Int. Math. Res. Not. (1994) no. 2, pp. 79–90 | DOI | MR | Zbl

[8] Boyd, J.P. Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation, Physica D, Volume 48 (1991), pp. 129–146 | Zbl

[9] Burq, N.; Gérard, P.; Tzvetkov, N. An instability property of the nonlinear Schrödinger equation on Sd , Math. Res. Lett., Volume 9 (2002) no. 2–3, pp. 323–335 | MR | Zbl

[10] Capistrano Filho, R.; Cavalcante, M. Stabilization and control for the biharmonic Schrödinger equation (preprint) | arXiv | MR

[11] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003 (xiv+323 pp.) | MR | Zbl

[12] Chen, W.; Guo, Z. Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, J. Anal. Math., Volume 114 (2011), pp. 121–156 | DOI | MR | Zbl

[13] Chen, W.; Li, J.; Miao, C.; Wu, J. Low regularity solutions of two fifth-order KdV type equations, J. Anal. Math., Volume 107 (2009), pp. 221–238 | DOI | MR | Zbl

[14] Christ, M.; Colliander, J.; Tao, T. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235–1293 | DOI | MR | Zbl

[15] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on R and T , J. Am. Math. Soc., Volume 16 (2003), pp. 705–749 | DOI | MR | Zbl

[16] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Symplectic nonsqueezing of the Korteweg-de Vries flow, Acta Math., Volume 195 (2005), pp. 197–252 | DOI | MR | Zbl

[17] Cui, S.; Deng, D.; Tao, S. Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data, Acta Math. Sin. Engl. Ser., Volume 22 (2006) no. 5, pp. 1457–1466 | MR | Zbl

[18] Cui, S.; Tao, S. Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., Volume 304 (2005) no. 2, pp. 683–702 | MR | Zbl

[19] Deconinck, B.; Trichtchenko, O. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs, Discrete Contin. Dyn. Syst., Ser. A, Volume 37 (2017), pp. 1323–1358 | MR

[20] Furioli, G.; Planchon, F.; Terraneo, E. Harmonic Analysis at Mount, Unconditional Well-Posedness for Semilinear Schrödinger and Wave Equations in Hs (Contemporary Mathematics), Volume vol. 320, American Mathematical Society, Providence, RI (2003), pp. 147–156 Holyoke (South Hadley, MA 2001) | MR | Zbl

[21] Ginibre, J.; Tsutsumi, Y.; Velo, G. On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384–436 | DOI | MR | Zbl

[22] Gorshkov, K.A.; Papko, V.V. The structure of solitary waves in media with anomalously small dispersion, Sov. Phys. JETP, Volume 46 (1977), pp. 92–96

[23] Gorsky, J.; Himonas, A. Well-posedness of KdV with higher dispersion, Math. Comput. Simul., Volume 80 (2009) no. 1, pp. 173–183 | DOI | MR | Zbl

[24] Grimshaw, R.; Joshi, N. Weakly nonlocal waves in a singularly perturbed Korteweg-de Vries equation, SIAM J. Appl. Math., Volume 55 (1995) no. 1, pp. 124–135 | DOI | MR | Zbl

[25] Guo, Z.; Kwon, S.; Oh, T. Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., Volume 322 (2013) no. 1, pp. 19–48 | MR | Zbl

[26] Hasimoto, H. Water waves, Kagaku, Volume 40 (1970), pp. 401–408 (Japanese)

[27] Hirayama, H. Local well-posedness for the periodic higher order KdV type equations, Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 6, pp. 677–693 | DOI | MR | Zbl

[28] Hong, S.; Kwak, C. Global well-posedness and nonsqueezing property for the higher-order KdV-type flow, J. Math. Anal. Appl., Volume 441 (2016) no. 1, pp. 140–166 | DOI | MR

[29] Hunter, J.K.; Scheurle, J. Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, Volume 32 (1988), pp. 253–268 | DOI | MR | Zbl

[30] Iguchi, T. A long wave approximation for capillary-gravity waves and the Kawahara equations, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 2 (2007), pp. 179–220 | MR | Zbl

[31] Il'ichev, A.T.; Semenov, A.Yu. Stability of solitary waves in dispersive media described by a fifth order evolution equation, Theor. Comput. Fluid Dyn., Volume 3 (1992), pp. 307–326 | DOI | Zbl

[32] Jia, Y.; Huo, Z. Well-posedness for the fifth-order shallow water equations, J. Differ. Equ., Volume 246 (2009), pp. 2448–2467 | MR | Zbl

[33] Kabakouala, A.; Molinet, L. On the stability of the solitary waves to the (generalized) Kawahara equation, J. Math. Anal. Appl., Volume 457 (2018) no. 1, pp. 478–497 | DOI | MR

[34] Kakutani, T.; Ono, H. Weak non-linear hydromagnetic waves in a cold collision free plasma, J. Phys. Soc. Jpn., Volume 26 (1969), pp. 1305–1318 | DOI

[35] Karpman, V.I.; Belashov, V.Yu. Dynamics of two-dimensional solitons in weakly dispersive media, Phys. Lett. A, Volume 154 (1991), pp. 131–139

[36] Kato, T. On nonlinear Schrödinger equations II. Hs-solutions and unconditional well-posedness, J. Anal. Math., Volume 67 (1995), pp. 281–306 | DOI | MR | Zbl

[37] Kato, T. Local well-posedness for Kawahara equation, Adv. Differ. Equ., Volume 16 (2011) no. 3–4, pp. 257–287 | MR | Zbl

[38] Kato, T. Low regularity well-posedness for the periodic Kawahara equation, Differ. Integral Equ., Volume 25 (2012) no. 11–12, pp. 1011–1036 | MR | Zbl

[39] Kato, T. Global well-posedness for the Kawahara equation with low regularity, Commun. Pure Appl. Anal., Volume 12 (2013) no. 3, pp. 1321–1339 | MR | Zbl

[40] Kawahara, T. Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn., Volume 33 (1972), pp. 260–264 | DOI

[41] Kenig, C.E.; Ponce, G.; Vega, L. A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 573–603 | DOI | MR | Zbl

[42] Kichenassamy, S.; Olver, P. Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal., Volume 23 (1992) no. 5, pp. 1141–1166 | DOI | MR | Zbl

[43] Killip, R.; Visan, M.; Zhang, X. Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on R2 (preprint) | arXiv | MR

[44] Kililp, R.; Visan, M.; Zhang, X. Symplectic Non-Squeezing for the Cubic NLS on the Line, Int. Math. Res. Not., Volume 2019 (2019) no. 5, pp. 1312–1332 | MR

[45] Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., Volume 39 (1895), pp. 422–443 | DOI | JFM | MR

[46] Kuksin, S. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 531–552 | DOI | MR | Zbl

[47] Kwak, C. Local well-posedness for the fifth-order KdV equations on T , J. Differ. Equ., Volume 260 (2016), pp. 7683–7737 | DOI | MR

[48] Kwak, C. Periodic fourth-order cubic NLS: local well-posedness and non-squeezing property, J. Math. Anal. Appl., Volume 461 (2018) no. 2, pp. 1327–1364 | DOI | MR

[49] Kwak, C. Low regularity Cauchy problem for the fifth-order modified KdV equations on T , J. Hyperbolic Differ. Equ., Volume 15 (2018) no. 3, pp. 463–557 | DOI | MR

[50] Kwon, S.; Oh, T. Unconditional well-posedness of mKdV, Int. Math. Res. Not., Volume 15 (2012), pp. 3509–3534 | Zbl

[51] Kwon, S.; Oh, T.; Yoon, H. Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse (2019) (in press) | Numdam | MR | Zbl

[52] Levandosky, S.P. A stability analysis of fifth-order water wave models, Physica D, Volume 125 (1999) no. 3–4, pp. 222–240 | MR | Zbl

[53] Levandosky, S.P. Stability of solitary waves of a fifth-order water wave model, Physica D, Volume 227 (2007) no. 2, pp. 162–172 | DOI | MR | Zbl

[54] Masmoudi, N.; Nakanishi, K. From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 4, pp. 975–1008 | DOI | MR | Zbl

[55] Mendelson, D. Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on T3 , J. Funct. Anal., Volume 272 (2017) no. 7, pp. 3019–3092 | DOI | MR | Zbl

[56] Miyaji, T.; Tsutsumi, Y. Local well-posedness of the NLS equation with third order dispersion in negative Sobolev spaces, Differ. Integral Equ., Volume 31 (2018), pp. 111–132 | MR | Zbl

[57] Molinet, L.; Pilod, D.; Vento, S. On unconditional well-posedness for the periodic modified Korteweg-de Vries equation, J. Math. Soc. Jpn., Volume 71 (2019) no. 1, pp. 147–201 | DOI | MR | Zbl

[58] Molinet, L.; Pilod, D.; Vento, S. Unconditional uniqueness for the modified Korteweg-de Vries equation on the line, Rev. Mat. Iberoam. (2019) (in press) | MR

[59] Mosincat, R.; Yoon, H. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line (preprint) | arXiv | MR

[60] Nakanishi, K.; Takaoka, H.; Tsutsumi, Y. Local well-posedness in low regularity of the mKdV equation with periodic boundary condition, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 4, pp. 1635–1654 | DOI | MR | Zbl

[61] Natali, F. A note on the stability for Kawahara-KdV type equations, Appl. Math. Lett., Volume 23 (2010) no. 5, pp. 591–596 | DOI | MR | Zbl

[62] T. Oh, Periodic L4-Strichartz estimate for KdV, unpublished note.

[63] Oh, T.; Wang, Y. Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, Volume 6 (2018), pp. E5 | DOI | MR | Zbl

[64] Okamoto, M. Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., Volume 157 (2017), pp. 44–61 | DOI | MR | Zbl

[65] Pomeau, Y.; Ramani, A.; Grammaticos, B. Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D, Volume 31 (1988), pp. 127–134 | DOI | MR | Zbl

[66] Roumégoux, D. A symplectic non-squeezing theorem for BBM equation, Dyn. Partial Differ. Equ., Volume 7 (2010) no. 4, pp. 289–305 | DOI | MR | Zbl

[67] Schneider, G.; Wayne, C.E. The rigorous approximation of long-wavelength capillary-gravity waves, Arch. Ration. Mech. Anal., Volume 162 (2002), pp. 247–285 | DOI | MR | Zbl

[68] Staffilani, G. On solutions for periodic generalized KdV equations, Int. Math. Res. Not., Volume 18 (1997), pp. 899–917 | MR | Zbl

[69] Takaoka, H.; Tsutsumi, Y. Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not. (2004), pp. 3009–3040 | DOI | MR | Zbl

[70] Tao, T. Multilinear weighted convolution of L2 functions and applications to nonlinear dispersive equations, Am. J. Math., Volume 123 (2001) no. 5, pp. 839–908 | MR | Zbl

[71] Tao, T. Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math., vol. 106, 2006 | DOI | MR | Zbl

[72] Tao, T. Global existence and uniqueness results for weak solutions of the focusing mass critical non-linear Schrödinger equation, Ann. Part. Diff. Eq., Volume 2 (2009) no. 1, pp. 61–81 | MR | Zbl

[73] Trichtchenko, O.; Deconinck, B.; Kollár, R. Stability of periodic traveling wave solutions to the Kawahara equation, SIAM J. Appl. Dyn. Syst., Volume 17 (2018) no. 4, pp. 2761–2783 | DOI | MR | Zbl

[74] Wang, H.; Cui, S.; Deng, D. Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin. Engl. Ser., Volume 23 (2007) no. 8, pp. 1435–1446 | DOI | MR | Zbl

[75] Win, Y.Y.S. Unconditional uniqueness of the derivative nonlinear Schrödinger equation in energy space, J. Math. Kyoto Univ., Volume 48 (2008) no. 3, pp. 683–697 | MR | Zbl

[76] Yamamoto, Y. On gravity-surface tension waves in liquids, J. Phys. Soc. Jpn., Volume 55 (1986), pp. 1523–1527 | DOI

[77] Yan, W.; Li, Y. Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012) no. 2, pp. 710–716 | MR | Zbl

[78] Yan, W.; Li, Y.; Yang, X. The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity, Math. Comput. Model., Volume 54 (2011) no. 5/6, pp. 1252–1261 | MR | Zbl

[79] Zhou, Y. Uniqueness of weak solution of the KdV equation, Int. Math. Res. Not., Volume 6 (1997), pp. 271–283 | MR | Zbl

Cité par Sources :