Symbolic dynamics for one dimensional maps with nonuniform expansion
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 727-755.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Given a piecewise C1+β map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinuities exponentially fast almost surely. More specifically, for each χ>0 we construct a finite-to-one Hölder continuous map from a countable topological Markov shift to the natural extension of the interval map, that codes the lifts of all invariant probability measures as above with Lyapunov exponent greater than χ almost everywhere.

DOI : 10.1016/j.anihpc.2019.10.001
Classification : 37B10, 37D25, 37E05
Mots-clés : Interval map, Markov partition, Pesin theory, Symbolic dynamics
@article{AIHPC_2020__37_3_727_0,
     author = {Lima, Yuri},
     title = {Symbolic dynamics for one dimensional maps with nonuniform expansion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {727--755},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.10.001},
     mrnumber = {4093615},
     zbl = {1455.37012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.10.001/}
}
TY  - JOUR
AU  - Lima, Yuri
TI  - Symbolic dynamics for one dimensional maps with nonuniform expansion
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 727
EP  - 755
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.10.001/
DO  - 10.1016/j.anihpc.2019.10.001
LA  - en
ID  - AIHPC_2020__37_3_727_0
ER  - 
%0 Journal Article
%A Lima, Yuri
%T Symbolic dynamics for one dimensional maps with nonuniform expansion
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 727-755
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.10.001/
%R 10.1016/j.anihpc.2019.10.001
%G en
%F AIHPC_2020__37_3_727_0
Lima, Yuri. Symbolic dynamics for one dimensional maps with nonuniform expansion. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 727-755. doi : 10.1016/j.anihpc.2019.10.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.10.001/

[1] Aaronson, Jon An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997 | DOI | MR | Zbl

[2] Adler, R.L.; Weiss, B. Entropy, a complete metric invariant for automorphisms of the torus, Proc. Natl. Acad. Sci. USA, Volume 57 (1967), pp. 1573–1576 | DOI | MR | Zbl

[3] Adler, Roy L.; Weiss, Benjamin Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, vol. 98, American Mathematical Society, Providence, R.I., 1970 | MR | Zbl

[4] Benedicks, Michael; Carleson, Lennart On iterations of 1ax2 on (1,1) , Ann. Math. (2), Volume 122 (1985) no. 1, pp. 1–25 | MR | Zbl

[5] Benedicks, Michael; Carleson, Lennart The dynamics of the Hénon map, Ann. Math. (2), Volume 133 (1991) no. 1, pp. 73–169 | MR | Zbl

[6] Bruin, Henk; Keller, Gerhard Equilibrium states for S -unimodal maps, Ergod. Theory Dyn. Syst., Volume 18 (1998) no. 4, pp. 765–789 | MR | Zbl

[7] Ben Ovadia, Snir Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., Volume 13 (2018), pp. 43–113 | MR | Zbl

[8] Bowen, Rufus Markov partitions for Axiom A diffeomorphisms, Am. J. Math., Volume 92 (1970), pp. 725–747 | MR | Zbl

[9] Bowen, Rufus Symbolic dynamics for hyperbolic flows, Am. J. Math., Volume 95 (1973), pp. 429–460 | MR | Zbl

[10] Bowen, Rufus Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 1975 | DOI | MR | Zbl

[11] Bowen, Rufus Bernoulli maps of the interval, Isr. J. Math., Volume 28 (1977) no. 1–2, pp. 161–168 | MR | Zbl

[12] Bruin, H. Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 571–580 | DOI | MR | Zbl

[13] Buzzi, Jérôme; Sarig, Omri Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergod. Theory Dyn. Syst., Volume 23 (2003) no. 5, pp. 1383–1400 | MR | Zbl

[14] Bunimovich, L.A.; Sinaĭ, Ya.G.; Chernov, N.I. Markov partitions for two-dimensional hyperbolic billiards, Usp. Mat. Nauk, Volume 45 (1990) no. 3(273), pp. 97–134 (221) | MR | Zbl

[15] Bruin, Henk; Todd, Mike Equilibrium states for interval maps: potentials with supϕinfϕ<htop(f) , Commun. Math. Phys., Volume 283 (2008) no. 3, pp. 579–611 | MR | Zbl

[16] Bruin, Henk; Todd, Mike Equilibrium states for interval maps: the potential tlog|Df| , Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 4, pp. 559–600 | Numdam | MR | Zbl

[17] Buzzi, J. Bowen Factors, Their Degree, and Codings of Surface Diffeomorphisms, 2019 (arXiv preprint) | arXiv

[18] Buzzi, Jérôme Intrinsic ergodicity of affine maps in [0,1]d , Monatshefte Math., Volume 124 (1997) no. 2, pp. 97–118 | MR | Zbl

[19] Buzzi, Jérôme Intrinsic ergodicity of smooth interval maps, Isr. J. Math., Volume 100 (1997), pp. 125–161 | MR | Zbl

[20] Buzzi, Jérôme Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionelles, Bull. Soc. Math. Fr., Volume 126 (1998) no. 1, pp. 51–77 | Numdam | MR | Zbl

[21] Buzzi, Jérôme Markov extensions for multi-dimensional dynamical systems, Isr. J. Math., Volume 112 (1999), pp. 357–380 | MR | Zbl

[22] Denker, Manfred; Keller, Gerhard; Urbański, Mariusz On the uniqueness of equilibrium states for piecewise monotone mappings, Stud. Math., Volume 97 (1990) no. 1, pp. 27–36 | MR | Zbl

[23] Dobbs, Neil Pesin theory and equilibrium measures on the interval, Fundam. Math., Volume 231 (2015) no. 1, pp. 1–17 | MR | Zbl

[24] Gelfert, Katrin Repellers for non-uniformly expanding maps with singular or critical points, Bull. Braz. Math. Soc., Volume 41 (2010) no. 2, pp. 237–257 | MR | Zbl

[25] Graczyk, Jacek; Światek, Grzegorz Generic hyperbolicity in the logistic family, Ann. Math. (2), Volume 146 (1997) no. 1, pp. 1–52 | MR | Zbl

[26] Gurevič, B.M. Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR, Volume 187 (1969), pp. 715–718 | MR | Zbl

[27] Gurevič, B.M. Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR, Volume 192 (1970), pp. 963–965 | MR

[28] Hofbauer, Franz; Keller, Gerhard Equilibrium states for piecewise monotonic transformations, Ergod. Theory Dyn. Syst., Volume 2 (1982) no. 1, pp. 23–43 | MR | Zbl

[29] Hofbauer, Franz β-shifts have unique maximal measure, Monatshefte Math., Volume 85 (1978) no. 3, pp. 189–198 | MR | Zbl

[30] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Isr. J. Math., Volume 34 (1979) no. 3, pp. 213–237 (1980) | MR | Zbl

[31] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II., Isr. J. Math., Volume 38 (1981) no. 1–2, pp. 107–115 | MR | Zbl

[32] Iommi, Godofredo; Todd, Mike Natural equilibrium states for multimodal maps, Commun. Math. Phys., Volume 300 (2010) no. 1, pp. 65–94 | MR | Zbl

[33] Jakobson, M.V. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys., Volume 81 (1981) no. 1, pp. 39–88 | DOI | MR | Zbl

[34] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES (1980) no. 51, pp. 137–173 | Numdam | MR | Zbl

[35] Katok, Anatole; Strelcyn, Jean-Marie; Ledrappier, F.; Przytycki, F. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[36] Katok, Svetlana; Ugarcovici, Ilie Symbolic dynamics for the modular surface and beyond, Bull. Am. Math. Soc., Volume 44 (2007) no. 1, pp. 87–132 | MR | Zbl

[37] Ledrappier, François Some properties of absolutely continuous invariant measures on an interval, Ergod. Theory Dyn. Syst., Volume 1 (1981) no. 1, pp. 77–93 | MR | Zbl

[38] Lima, Yuri; Matheus, Carlos Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 1–38 | MR | Zbl

[39] Lima, Yuri; Sarig, Omri M. Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc., Volume 21 (2019) no. 1, pp. 199–256 | MR | Zbl

[40] Lasota, A.; Yorke, James A. On the existence of invariant measures for piecewise monotonic transformations, Trans. Am. Math. Soc., Volume 186 (1973), pp. 481–488 (1974) | DOI | MR | Zbl

[41] Lyubich, Mikhail Dynamics of quadratic polynomials. I, II, Acta Math., Volume 178 (1997) no. 2, pp. 185–247 (247–297) | MR | Zbl

[42] Mañé, Ricardo Hyperbolicity, sinks and measure in one-dimensional dynamics, Commun. Math. Phys., Volume 100 (1985) no. 4, pp. 495–524 | MR | Zbl

[43] Pinheiro, Vilton Expanding measures, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 6, pp. 889–939 | Numdam | MR | Zbl

[44] Przytycki, Feliks Lyapunov characteristic exponents are nonnegative, Proc. Am. Math. Soc., Volume 119 (1993) no. 1, pp. 309–317 | MR | Zbl

[45] Pesin, Yakov; Senti, Samuel Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Mosc. Math. J., Volume 5 (2005) no. 3, pp. 669–678 (743–744) | MR | Zbl

[46] Pesin, Ya.B.; Senti, S.; Zhang, K. Lifting measures to inducing schemes, Ergod. Theory Dyn. Syst., Volume 28 (2008) no. 2, pp. 553–574 | MR | Zbl

[47] Ratner, M.E. Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693–704 | MR | Zbl

[48] Ratner, M. Markov partitions for Anosov flows on n -dimensional manifolds, Isr. J. Math., Volume 15 (1973), pp. 92–114 | DOI | MR | Zbl

[49] Rivera-Letelier, Juan Asymptotic Expansion of Smooth Interval Maps, 2012 (26 pages, arXiv preprint) | arXiv | MR

[50] Rohlin, V.A. Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 25 (1961), pp. 499–530 | MR | Zbl

[51] Ruette, Sylvie Mixing Cr maps of the interval without maximal measure, Isr. J. Math., Volume 127 (2002), pp. 253–277 | MR | Zbl

[52] Sarig, Omri M. Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn., Volume 5 (2011) no. 3, pp. 593–608 | MR | Zbl

[53] Sarig, Omri M. Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Am. Math. Soc., Volume 26 (2013) no. 2, pp. 341–426 | MR | Zbl

[54] Sinaĭ, Ja.G. Construction of Markov partitionings, Funkc. Anal. Prilozh., Volume 2 (1968) no. 3, pp. 70–80 (Loose errata) | MR | Zbl

[55] Sinaĭ, Ja.G. Markov partitions and U-diffeomorphisms, Funkc. Anal. Prilozh., Volume 2 (1968) no. 1, pp. 64–89 | MR | Zbl

[56] Smorodinsky, M. β-automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hung., Volume 24 (1973), pp. 273–278 | DOI | MR | Zbl

[57] Takahashi, Yōichirō Isomorphisms of β-automorphisms to Markov automorphisms, Osaka J. Math., Volume 10 (1973), pp. 175–184 | MR | Zbl

[58] Yoccoz, J.-C. A proof of Jakobson's theorem https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL7416254474776698194_Jakobson_jcy.pdf (34 pages, available at)

[59] Young, Lai-Sang Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 585–650 | MR | Zbl

Cité par Sources :